Polymers are gaining even more ground as carriers of therapeutic agents because of the potential to modify the properties of clinically proven medicines, which have limited use due to their shortcomings and side effects. Polymeric pharmaceutical systems are able to solve problems such as dose limitation of drug, poor water-solubility and duration of drug action. Polymer-pharmaceutical conjugates enable the improvement of drug localization in target tissue and also to optimize the drug release speed. Of great interest is the development of even cleverer and newer pharmaceutical forms made of polymers of varied reactivity, which allows for their binding with different biologically active substances.
Lee KH, Chung YJ, Kim YC, Song SJ. Anti-tumor activity of paclitaxel prodrug conjugated with polyethylene glycol. Bull. Korean Chem. Soc. 2005;26(7):1079-82.
Huang PS, Oliff A. Drug-targeting strategies in cancer therapy. A Curr Opin Genet Dev. 2001;11(1):104-10.
Moses MA, Brem H, Langer R, Advancing the field of drug delivery: Taking aim at cancer. Cancer Cell. 2003;4:337-41.
Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp. 1975;51(1):135-53.
Ottenbrite RM, Regelson W, Kaplan A, Carchman R, Morahan P, Munson A. In Polymer Drugs ( Donaruma & Vogl, Eds.). New York: Academic Press; 1978.
Uhrich K. Trends in Polymer Science. 1997;5:388.
Duncan R. Drug-polymer conjugates: potential for improved chemotherapy. Anti-Cancer Drug. 1992;3:175-210.
Senter PD, Svensson HP, Schreiber GJ, Rodriguez JL, Vrudhula VM. Poly(ethylene glycol)-Doxorubicin conjugates containing beta-lactamase-sensitive linkers. Bioconjugate Chem. 1995; 6(4):389-94.
Schacht EH. Ionic polymers as drug carriers. In: Brucks (ed) Controlled Drug Delivery. CRC, Boca Raton. 1983; Chapter 6, vol 1. p.149
De Duve C, De Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F. Lysosomotropic agents. Biochem Pharmacol. 1974;23(18):2495-531.
Greco F, Vincent MJ. Polymer-drug conjugates: current status and future trends. Frontiers Biosci. 2008;13:2744-56.
Duncan R, Lloyd JB, Kopecek J. Degradation of side chains of N-(2 hydroxypropyl) methacrylamide copolymers by lysosomal enzymes. Biochem Biophys Res Commun. 1980;94:284-90.
Duncan R, Cable HC, Lloyd JB, Rejmanova P, Kopecek J. Polymers containing enzymatically degradable bonds, 7. Design of oligopeptide side-chains in poly[N-(2-hydroxypropyl)methacrylamide] copolymers to promote efficient degradation by lysosomal enzymes. Makromol Chem. 1983;184(10):1997-2008.
Duncan R, Seymour LW, O'Hare KB, Wedge S, Hume IC, Ulbrich K, et.al. Preclinical evaluation of polymer-bound doxorubicin. J Control Rel. 1992;19:331-46.
Troev K.D. Polyphosphoesters: Chemistry and Application. Amsterdam, NY: Elsevier; 2012.
Gee JMW, Howell A, Gullick WJ, Benz CC, Sutherland RL, Santen RJ, et.al. Growth factor signalling, resistance and breast cancer. Endocr Relat Cancer. 2005;12:S1-S7.
Vicent MJ, Greco F, Nicholson RI, Paul A, Griffiths PC, Duncan R. Polymer therapeutics designed for a combination therapy of hormone-dependent cancer. Angew Chem Int Ed Engl. 2005;44:4061-6.
Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, et.al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin. Cancer Res. 1999;5(1): 83-94.
Greco F, Vicent MJ, Gee S, Jones AT, Gee J, Nicholson RI, et al. Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer-Dox-AGM in breast cancer cells. J Contr Rel. 2007;117(1):28-39.
Greenwald RB, Pendri A, Conover C, Gilbert C, Yang R, Xia J. Drug delivery systems. 2. Camptothecin 20-O-poly(ethylene glycol) ester transport forms. J Med Chem. 1996;39(10):1938-40.
Conover CD, Pendri A, Lee C, Gilbert CW, Shum KL, Greenwald RB. Camptothecin delivery systems: the antitumor activity of a camptothecin-20-0-polyethylene glycol ester transport form. Anticancer Res. 1997;17:3361-8.
Greenwald RB, Pendri A, Conover CD, Lee C, Choe YH, Gilbert C, et al. Camptothecin-20-PEG ester transport forms: the effect of spacer groups on antitumor activity. Biorg Med Chem. 1998;6(5):551-62.
Greenwald RB, Gilbert CW, Pendri A, Conover CD, Xia J, Martinez A. Drug delivery systems: water soluble taxol 2'-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness. J Med Chem. 1996;39(2):424-31.
Li C, Yu D, Inoue T, Yang DJ, Milas L, Hunter NR, et al. Synthesis and evaluation of water-soluble polyethylene glycol-paclitaxel conjugate as a paclitaxel prodrug. Anticancer Drug. 1996;7(6):642-8.
Nathan A, Zalipsky S, Ertel SI, Agathas SN, Yarmush ML, Kohn J. Copolymers of lysine and polyethylene glycol: a new family of functionalized drug carriers. Bioconjugate Chem. 1993;4(1):54-62.
Greenwald RB, Pendri A, Bolikal D, Gilbert C. Highly water soluble taxol derivatives: 2A²-polyethyleneglycol esters as potential prodrugs. Bioorg Med Chem Lett. 1994;4(20):2465-70.
Greenwald RB, Pendri A, Bolikal D. Highly water soluble taxol derivatives: 7-polyethylene glycol carbamates and carbonates. J Org Chem.1995;60(2):331-36.
Ryu BY, Sohn JS, Hess M, Choi SK, Choi JK, Jo BW. Synthesis and anti-cancer efficacy of rapid hydrolysed water-soluble paclitaxel pro-drugs. J Biomater Sci Polym. Ed. 2008;19(3):311-24.
Feng X, Yuan YJ, Wu JC. Synthesis and evaluation of water-soluble paclitaxel prodrugs. Bioorg. Med Chem Lett. 2002;12(22):3301-3.
Zhang X, Li Y, Chen X, Wang X, Xu X, Liang Q, et al. Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate. Biomaterial. 2005;26:2121-8.
Xie Z, Lu T, Chen X, Lu C, Zheng Y, Jing X. Triblock poly(lactic acid)-b-poly (ethylene glycol)-b-poly(lactic acid)/paclitaxel conjugates: Synthesis, micellization, and cytotoxicity. J Appl Polym Sci. 2007;105(4):2271-9.
Zhang S, Zou J, Elsabahy M, Karwa A, Li A, Moore DA, et al. Poly(ethylene oxide)-block-polyphosphester-based Paclitaxel Conjugates as a Platform for Ultra-high Paclitaxel-loaded Multifunctional Nanoparticles. Chem Sci. 2013;4(5):2122-6.
Li G, Liu J, Pang Y, Wang R, Mao L, Yan D, et al. Polymeric micelles with water-insoluble drug as hydrophobic moiety for drug delivery. Biomacromolecules. 2011;12(6):2016-26.
Belcheva N, Smid J, Lambov N, Danchev N, Peikov P, Zlatkov A, Tsvetanov C. Polymeric sustained release formulations of the bronchial dilator Vephylline. J Control Release. 1995;37:43-8.
Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem. 2005;48(4):1098-106.
Papas S, Akoumianaki T, Kalogiros C, Hadjiarapoglou L, Theodoropoulos PA, Tsikaris V. Synthesis and antitumor activity of peptide-paclitaxel conjugates. J Pept Sci. 2007;13(10):662-71.
Li C, Yu DF, Newman RA, Cabral F, Stephens LC, Hunter N, et al. Complete regression of well-established tumors using a novel water-soluble poly(l-glutamic acid)-paclitaxel conjugate. Cancer Res. 1998;58(11):2404-9.
Lee Y. Preparation and characterization of folic acid linked poly(L-glutamate) nanoparticles for cancer targeting. Macromol Res. 2006;14(3):387-93.
Leonelli F, La Bella A, Migneco LM, Bettolo RM. Design, synthesis and applications of hyaluronic acid-paclitaxel bioconjugates. Molecules. 2008;13(2):360-78.
Luo Y, Prestwich GD. Synthesis and selective cytotoxicity of a hyaluronic acid−antitumor bioconjugate. Bioconjugate Chem.1999;10(5):755-63.
Luo Y, Ziebell MR, Prestwich GD. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromol. 2000;1(2):208-18.
Zhang P, Hu L, Yin Q, Zhang Z, Feng L, Li Y. Transferrin-conjugated polyphosphoester hybrid micelle loading paclitaxel for brain-targeting delivery: Synthesis, preparation and in vivo evaluation. J Control Release. 2012;159(3):429-34.
Zhang G, Zhang M, He J, Ni P. Synthesis and characterization of a new multifunctional polymeric prodrug paclitaxel-polyphosphoester-folic acid for targeted drug delivery. Polym Chem. 2013;4:4515-25.
Georgieva R, Tsevi R, Kossev K, Kusheva R, Balgjiska M, Petrova R, et al. Immobilization of aminothiols on poly(oxyalkylene phosphates). Formation of poly(oxyethylene phosphates)/cysteamine complexes and their radioprotective efficiency. J Med Chem. 2002;45(26):5797-801.
Troev K, Tsacheva I, Koseva N, Georgieva R, Gitsov I. Immobilization of aminothiols on poly(oxyethylene H-phosphonate)s and poly(oxyethylene phosphate)s - An approach to polymeric protective agents for radiotherapy of cancer. J Polym Sci Part A Polym Chem. 2007;45(7):1349-63.
Pencheva I, Bogomilova A, Koseva N, Obreshkova D, Troev K. HPLC study on the stability of bendamustine hydrochloride immobilized onto polyphosphoesters. J Pharm Biomed Anal. 2008;48(4):1143-50.
Troev KD, Mitova VA, Ivanov IG. On the design of polymeric 5A²-O-ester prodrugs of 3A²-azido-2A²,3A²-dideoxythymidine (AZT). Tetrahedron Lett. 2010;51(47):6123-25.
Staikos G, Sotiropoulou M, Bokias G, Bossard F, Oberdisse J, Baikois E. In: Hydrogen bonded interpolymer complexes. Formation, structure and applications. (Khutoryanskiy VV, Staikos G, Eds.). Abington, UK: World Scientific Publishing (UK) Ltd c/o Morston Book Services; 2009.
Bogomilova A, Höhna M, Günthera M, Herrmanna A, Troev K, Wagnera E, et al. A polyphosphoester conjugate of melphalan as antitumoral agent. Eur J Pharm Sci. 2013;50(3-4):410-9.
Huang SW, Wang J, Zhang PC, Mao HQ, Zhuo RX, Leong KW. Water-soluble and nonionic polyphosphoester: synthesis, degradation, biocompatibility and enhancement of gene expression in mouse muscle. Biomacromolecules. 2004;5(2):306-11.
Dugas H, Penney C. In: Bioorganic chemistry: A chemical approach to enzyme action. (Cantor CR, Ed.). Berlin: Springer; 1981.
Hwu JR, Lin YS, Josephrajan T, Hsu MH, Cheng FY, Yeh CS, et al. Targeted Paclitaxel by Conjugation to Iron Oxide and Gold Nanoparticles. J Am Chem Soc. 2009;131:66-8.
Mitova V, Hristova T, Cherkezova R, Koseva N, Yusa S, Troev K. Polyphosphoester-based paclitaxel complexes. J Appl Polym Sci. 2015;132(45):42772-8.