Scientific Online Resource System

Scripta Scientifica Pharmaceutica

Detection techniques of circular RNAs as new biomarkers in systemic lupus erythematosus

Galya Mihaylova, Mariya Kosturkova, Maria Radanova


Systemic lupus erythematosus (SLE) is severe, chronic autoimmune disease affecting mainly young active individuals, leading to disability and premature death. Recent studies have reported long non-coding RNAs (lncRNAs) to participate in the pathogenesis of the disease. Among lncRNAs, the circular RNAs (circRNAs) gain growing scientific attention due to their stability in body fluids. This makes them suitable for new non-biomarkers for evaluation of SLE activity and promising therapeutic targets. Methods for detecting of circRNAs are evolving rapidly. The aim of this review is to present these techniques and their advantages and disadvantages.


circRNAs, long non-coding RNA, SLE

Full Text


Bertsias GK, Pamfil C, Fanouriakis A, Boumpas DT. Diagnostic criteria for systemic lupus erythematosus: has the time come? Nat Rev Rheumatol. 2013;9(11):687-94. doi: 10.1038/nrrheum.2013.103.

Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med. 2008;358(9):929-39. doi: 10.1056/NEJMra071297.

D'Cruz DP, Khamashta MA, Hughes GR. Systemic lupus erythematosus. Lancet. 2007;369(9561):587-96. doi: 10.1016/S0140-6736(07)60279-7.

Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365(22):2110-21. doi: 10.1056/NEJMra1100359.

Kazimierczyk M, Kasprowicz MK, Kasprzyk ME, Wrzesinski J. Human long noncoding RNA interactome: Detection, characterization and function. Int J Mol Sci. 2020;21(3):1027. doi: 10.3390/ijms21031027.

Wang J, Yan S, Yang J, Lu H, Xu D, Wang Z. Non-coding RNAs in rheumatoid arthritis: From bench to bedside. Front Immunol. 2020;10:3129. doi: 10.3389/fimmu.2019.03129.

Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Dysregulation of non-coding RNAs in autoimmune thyroid disease. Exp Mol Pathol. 2020;117:104527. doi: 10.1016/j.yexmp.2020.104527.

Gao Y, Li S, Zhang Z, Yu X, Zheng J. The role of long non-coding RNAs in the pathogenesis of RA, SLE, and SS. Front Med (Lausanne). 2018;5:193. doi: 10.3389/fmed.2018.00193.

Zhang F, Wu L, Qian J, Qu B, Xia S, La T, et al. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J Autoimmun. 2016;75:96-104. doi: 10.1016/j.jaut.2016.07.012.

Suo QF, Sheng J, Qiang FY, Tang ZS, Yang YY. Association of long non-coding RNA GAS5 and miR-21 levels in CD4+ T cells with clinical features of systemic lupus erythematosus. Exp Ther Med. 2018;15(1):345-50. doi: 10.3892/etm.2017.5429.

Mihaylova G, Vasilev V, Kosturkova MB, Stoyanov GS, Radanova M. Long non-coding RNAs as new biomarkers in lupus nephritis: A connection between present and future. Cureus. 2020;12(7):e9003. doi: 10.7759/cureus.9003.

Wu GC, Hu Y, Guan SY, Ye DQ, Pan HF. Differential plasma expression profiles of long non-coding RNAs reveal potential biomarkers for systemic lupus erythematosus. Biomolecules. 2019;9(6):206. doi: 10.3390/biom9060206.

Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, Wu M. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16(1):94. doi: 10.1186/s12943-017-0663-2.

Li LJ, Zhu ZW, Zhao W, Tao SS, Li BZ, Xu SZ, et al. Circular RNA expression profile and potential function of hsa_circ_0045272 in systemic lupus erythematosus. Immunology. 2018;155(1):137-49. doi: 10.1111/imm.12940.

Li H, Li K, Lai W, Li X, Wang H, Yang J, et al. Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta. 2018;480:17-25. doi: 10.1016/j.cca.2018.01.026.

Zhang C, Wang X, Chen Y, Wu Z, Zhang C, Shi W. The down-regulation of hsa_circ_0012919, the sponge for miR-125a-3p, contributes to DNA methylation of CD11a and CD70 in CD4+ T cells of systemic lupus erythematous. Clin Sci (Lond). 2018;132(21):2285-98. doi: 10.1042/CS20180403.

Guo G, Wang H, Ye L, Shi X, Yan K, Lin K, et al. Hsa_circ_0000479 as a novel diagnostic biomarker of systemic lupus erythematosus. Front Immunol. 2019;10:2281. doi: 10.3389/fimmu.2019.02281.

Ouyang Q, Huang Q, Jiang Z, Zhao J, Shi GP, Yang M. Using plasma circRNA_002453 as a novel biomarker in the diagnosis of lupus nephritis. Mol Immunol. 2018;101:531-8. doi: 10.1016/j.molimm.2018.07.029.

Zhou Z, Sun B, Huang S, Zhao L. Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death Dis. 2019;10(7):503. doi: 10.1038/s41419-019-1744-5.

Cortes R, Forner MJ. Circular RNAS: novel biomarkers of disease activity in systemic lupus erythematosus? Clin Sci (Lond). 2019;133(9):1049-52. doi: 10.1042/CS20180826.

Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. The hepatitis delta (delta) virus possesses a circular RNA. Nature. 1986;323(6088):558-60. doi: 10.1038/323558a0.

Zhao CH, Qu L, Zhang H, Qu R. Identification of breast cancer-related circRNAs by analysis of microarray and RNA-sequencing data: An observational study. Medicine (Baltimore). 2019;98(46):e18042. doi: 10.1097/MD.0000000000018042.

Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011;30(21):4414-22. doi: 10.1038/emboj.2011.359.

Schneider T, Schreiner S, Preußer C, Bindereif A, Rossbach O. Northern blot analysis of circular RNAs. Methods Mol Biol. 2018;1724:119-33. doi: 10.1007/978-1-4939-7562-4_10.

You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015;18(4):603-10. oi: 10.1038/nn.3975.

Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73(5):1019-30. doi: 10.1016/0092-8674(93)90279-y.

Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32(5):453-61. doi: 10.1038/nbt.2890.

Tabak HF, Van der Horst G, Smit J, Winter AJ, Mul Y, Groot Koerkamp MJ. Discrimination between RNA circles, interlocked RNA circles and lariats using two-dimensional polyacrylamide gel electrophoresis. Nucleic Acids Res. 1988;16(14A):6597-605. doi: 10.1093/nar/16.14.6597.

Schindler CW, Krolewski JJ, Rush MG. Selective trapping of circular double-stranded DNA molecules in solidifying agarose. Plasmid. 1982;7(3):263-70. doi: 10.1016/0147-619x(82)90007-5.

López-Jiménez E, Rojas AM, Andrés-León E. RNA sequencing and prediction tools for circular RNAs analysis. Adv Exp Med Biol. 2018;1087:17-33. doi: 10.1007/978-981-13-1426-1_2

Pandey PR, Munk R, Kundu G, De S, Abdelmohsen K, Gorospe M. Methods for analysis of circular RNAs. Wiley Interdiscip Rev RNA. 2020;11(1):e1566. doi: 10.1002/wrna.1566.

Arraystar Inc. Why use microarray over RNA-seq for circular RNA expression profiling? Available from:

Zucko D, Boris-Lawrie K. Circular RNAs are regulators of diverse animal transcriptomes: One health perspective. Front Genet. 2020;11:999. doi: 10.3389/fgene.2020.00999.

Hansen TB, Venø MT, Damgaard CK, Kjems J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 2016;44(6):e58. doi: 10.1093/nar/gkv1458.

Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32(5):453-61. doi: 10.1038/nbt.2890.

Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006;34(8):e63. doi: 10.1093/nar/gkl151.

Vincent HA, Deutscher MP. Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem. 2006;281(40):29769-75. doi: 10.1074/jbc.M606744200.

Barrett SP, Salzman J. Circular RNAs: analysis, expression and potential functions. Development. 2016;143(11):1838-47. doi: 10.1242/dev.128074.

Pandey PR, Rout PK, Das A, Gorospe M, Panda AC. RPAD (RNase R treatment, polyadenylation, and poly(A)+ RNA depletion) method to isolate highly pure circular RNA. Methods. 2019;155:41-8. doi: 10.1016/j.ymeth.2018.10.022.

Heumüller AW, Boeckel JN. Characterization and validation of circular RNA and their host gene mRNA expression using PCR. Methods Mol Biol. 2018;1724:57-67. doi: 10.1007/978-1-4939-7562-4_5.

Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H, et al. Transcriptome-wide investigation of circular RNAs in rice. RNA. 2015;21(12):2076-87. doi: 10.1261/rna.052282.115.

Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13(1):34-42. doi: 10.1080/15476286.2015.1128065.

Li P, Chen H, Chen S, Mo X, Li T, Xiao B, et al. Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer. 2017;116(5):626-33. doi: 10.1038/bjc.2016.451.

Zhong S, Wang J, Hou J, Zhang Q, Xu H, Hu J, et al. Circular RNA hsa_circ_0000993 inhibits metastasis of gastric cancer cells. Epigenomics. 2018;10(10):1301-13. doi: 10.2217/epi-2017-0173.

Tu C, Du T, Shao C, Liu Z, Li L, Shen Y. Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI. Forensic Sci Med Pathol. 2018;14(2):194-201. doi: 10.1007/s12024-018-9973-y.

Zhong S, Zhou S, Yang S, Yu X, Xu H, Wang J, et al. Identification of internal control genes for circular RNAs. Biotechnol Lett. 2019;41(10):1111-9. doi: 10.1007/s10529-019-02723-0.

Itzkovitz S, van Oudenaarden A. Validating transcripts with probes and imaging technology. Nat Methods. 2011;8(4 Suppl):S12-9. doi: 10.1038/nmeth.1573.

Zirkel A, Papantonis A. Detecting circular RNAs by RNA fluorescence in situ hybridization. Methods Mol Biol. 2018;1724:69-75. doi: 10.1007/978-1-4939-7562-4_6.

Awan AR, Manfredo A, Pleiss JA. Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans. Proc Natl Acad Sci U S A. 2013;110(31):12762-7. doi: 10.1073/pnas.1218353110.



About The Authors

Galya Mihaylova
Medical University of Varna,

Depatrment of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy


Mariya Kosturkova
Medical University of Varna

Department of Propaedeutics of Internal Diseases, Faculty of Medicine;

Clinic of Internal Disease, St. Marina University Hospital, Varna

Maria Radanova
Medical University of Varna

Depatrment of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy;

Clinic of General and Clinical Pathology, Laboratory of Molecular Pathology, St. Marina University Hospital, Varna

Font Size