Scientific Online Resource System

Scripta Scientifica Pharmaceutica

Flavonoids and the liver—a review

Mehmed Abtulov, Stefka Valcheva-Kuzmanova

Abstract

INTRODUCTION: Liver diseases (hepatitis, steatosis, non-alcoholic fatty liver disease, cirrhosis and hepatocellular carcinoma) are among the most common causes of disability and death worldwide. An accumulating body of evidence has established a relationship between the intake of polyphenol-rich foods and beverages and the lower incidence of liver diseases. Flavonoids are important ingredients in human diet.

AIM: The aim or the present review article was to summarize the current knowledge about the effects of flavonoids on liver health and the mechanisms involved.

MATERIALS AND METHODS: Literature in Pubmed, Google Scholar and ScienceDirect has been studied and analyzed.

RESULTS: Flavonoids protect the liver from viral, toxic, drug-induced and obesity-associated liver damage, but the data are almost exclusively derived from animal studies. However, the number of clinical trials is insufficient and additional human studies are needed to confirm their effect in clinical practice.

CONCLUSION: Analysis of the literature data from scientific databases showed promising hepatoprotective effects of flavonoids proved predominantly in experimental animal studies.


Keywords

flavonoids, hepatoprotective, liver, review

Full Text


References

Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151-71. doi: 10.1016/j.jhep.2018.09.014.

Ohashi K, Pimienta M, Seki E. Alcoholic liver disease: A current molecular and clinical perspective. Liver Res. 2018;2(4):161-72. doi: 10.1016/j.livres.2018.11.002.

Katarey D, Verma S. Drug-induced liver injury. Clin Med (Lond). 2016 ;16(Suppl 6):s104-9. doi: 10.7861/clinmedicine.16-6-s104.

Kim D, Touros A, Kim WR. Nonalcoholic fatty liver disease and metabolic syndrome. Clin Liver Dis. 2018;22(1):133-40. doi: 10.1016/j.cld.2017.08.010.

Carbone M, Neuberger JM. Autoimmune liver disease, autoimmunity and liver transplantation. J Hepatol. 2014;60(1):210-23. doi: 10.1016/j.jhep.2013.09.020.

Li S, Hong M, Tan HY, Wang N, Feng Y. Insights into the role and interdependence of oxidative stress and inflammation in liver diseases. Oxid Med Cell Longev. 2016;2016:4234061. doi: 10.1155/2016/4234061.

Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2(5):270-8. doi: 10.4161/oxim.2.5.9498.

Vogiatzoglou A, Mulligan AA, Lentjes MA, Luben RN, Spencer JP, Schroeter H, et al. Flavonoid intake in European adults (18 to 64 years). PLoS One. 2015;10(5):e0128132. doi: 10.1371/journal.pone.0128132.

Rasouli H, Farzaei MH, Khodarahmi R. Polyphenols and their benefits: A review. Int J Food Prop. 2017;20(Suppl 2):1700-41. doi:10.1080/10942912.2017.1354017.

Yue S, Xue N, Li H, Huang B, Chen Z, Wang X. Hepatoprotective effect of apigenin against liver injury via the non-canonical NF-κB pathway in vivo and in vitro. Inflammation. 2020;43(5):1634-48. doi: 10.1007/s10753-020-01238-5.

Wang F, Liu JC, Zhou RJ, Zhao X, Liu M, Ye H, et al. Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression. Chem Biol Interact. 2017;275:171-7. doi: 10.1016/j.cbi.2017.08.006.

Zhao L, Zhang J, Hu C, Wang T, Lu J, Wu C, et al. Apigenin prevents acetaminophen-induced liver injury by activating the SIRT1 pathway. Front Pharmacol. 2020;11:514. doi: 10.3389/fphar.2020.00514.

Ji J, Yu Q, Dai W, Wu L, Feng J, Zheng Y, et al. Apigenin alleviates liver fibrosis by inhibiting hepatic stellate cell activation and autophagy via TGF-β1/Smad3 and p38/PPARα pathways. PPAR Res. 2021;2021:6651839. doi: 10.1155/2021/6651839.

Tsaroucha AK, Tsiaousidou A, Ouzounidis N, Tsalkidou E, Lambropoulou M, Giakoustidis D, et al. Intraperitoneal administration of apigenin in liver ischemia/reperfusion injury protective effects. Saudi J Gastroenterol. 2016;22(6):415-22. doi: 10.4103/1319-3767.195556.

Singh P, Mishra SK, Noel S, Sharma S, Rath SK. Acute exposure of apigenin induces hepatotoxicity in Swiss mice. PLoS One. 2012;7(2):e31964. doi: 10.1371/journal.pone.0031964.

Nabavi SF, Braidy N, Gortzi O, Sobarzo-Sanchez E, Daglia M, Skalicka-Woźniak K, et al. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res Bull. 2015;119(Pt A):1-11. doi: 10.1016/j.brainresbull.2015.09.002.

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. doi: 10.1017/jns.2016.41.

Li J, Li X, Xu W, Wang S, Hu Z, Zhang Q, et al. Antifibrotic effects of luteolin on hepatic stellate cells and liver fibrosis by targeting AKT/mTOR/p70S6K and TGFβ/Smad signalling pathways. Liver Int. 2015;35(4):1222-33. doi: 10.1111/liv.12638.

Kwon EY, Jung UJ, Park T, Yun JW, Choi MS. Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity. Diabetes. 2015;64(5):1658-69. doi: 10.2337/db14-0631.

Liu G, Zhang Y, Liu C, Xu D, Zhang R, Cheng Y, et al. Luteolin alleviates alcoholic liver disease induced by chronic and binge ethanol feeding in mice. J Nutr. 2014;144(7):1009-15. doi: 10.3945/jn.114.193128.

Domitrović R, Jakovac H, Grebić D, Milin C, Radosević-Stasić B. Dose- and time-dependent effects of luteolin on liver metallothioneins and metals in carbon tetrachloride-induced hepatotoxicity in mice. Biol Trace Elem Res. 2008;126(1-3):176-85. doi: 10.1007/s12011-008-8181-0.

Yin Y, Gao L, Lin H, Wu Y, Han X, Zhu Y, et al. Luteolin improves non-alcoholic fatty liver disease in db/db mice by inhibition of liver X receptor activation to down-regulate expression of sterol regulatory element binding protein 1c. Biochem Biophys Res Commun 2017;482:720-6. doi: 10.1016/j.bbrc.2016.11.101.

Wang Z, Liu Y, Zhao X, Liu S, Liu Y, Wang D. Aronia melanocarpa prevents alcohol-induced chronic liver injury via regulation of Nrf2 signaling in C57BL/6 Mice. Oxid Med Cell Longev. 2020;2020:4054520. doi: 10.1155/2020/4054520.

Zhang H, Tan X, Yang D, Lu J, Liu B, Baiyun R, et al. Dietary luteolin attenuates chronic liver injury induced by mercuric chloride via the Nrf2/NF-κB/P53 signaling pathway in rats. Oncotarget. 2017;8(25):40982-93. doi: 10.18632/oncotarget.17334.

Zheng J, Shao Y, Jiang Y, Chen F, Liu S, Yu N, et al. Tangeretin inhibits hepatocellular carcinoma proliferation and migration by promoting autophagy-related BECLIN1. Cancer Manag Res. 2019;11:5231-42. doi: 10.2147/CMAR.S200974.

Omar HA, Mohamed WR, Arab HH, Arafa el-SA. Tangeretin alleviates cisplatin-induced acute hepatic injury in rats: targeting MAPKs and apoptosis. PLoS One. 2016;11(3):e0151649. doi: 10.1371/journal.pone.0151649.

Chaumontet C, Bex V, Gaillard-Sanchez I, Seillan-Heberden C, Suschetet M, Martel P. Apigenin and tangeretin enhance gap junctional intercellular communication in rat liver epithelial cells. Carcinogenesis. 1994;15(10):2325-30. doi: 10.1093/carcin/15.10.2325.

Zhu X, Xiong T, Liu P, Guo X, Xiao L, Zhou F, et al. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem Toxicol. 2018;114:52-60. doi: 10.1016/j.fct.2018.02.019.

Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res. 2019;33(12):3140-52. doi: 10.1002/ptr.6486.

Sánchez-González PD, López-Hernández FJ, Dueñas M, Prieto M, Sánchez-López E, Thomale J, et al. Differential effect of quercetin on cisplatin-induced toxicity in kidney and tumor tissues. Food Chem Toxicol. 2017;107(Pt A):226-36. doi: 10.1016/j.fct.2017.06.047.

Chen X. Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn Mag. 2010;6(22):135-41. doi: 10.4103/0973-1296.62900.

Zhou J, Fang L, Liao J, Li L, Yao W, Xiong Z, et al. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo. PLoS One. 2017;12(3):e0172838. doi: 10.1371/journal.pone.0172838.

Zou H, Zheng YF, Ge W, Wang SB, Mou XZ. Synergistic anti-tumour effects of quercetin and oncolytic adenovirus expressing TRAIL in human hepatocellular carcinoma. Sci Rep. 2018;8(1):2182. doi: 10.1038/s41598-018-20213-7.

Chen C, Liu Q, Liu L, Hu YY, Feng Q. Potential biological effects of (-)-epigallocatechin-3-gallate on the treatment of nonalcoholic fatty liver disease. Mol Nutr Food Res. 2018;62(1):1700483. doi: 10.1002/mnfr.201700483.

Masterjohn C, Bruno RS. Therapeutic potential of green tea in nonalcoholic fatty liver disease. Nutr Rev. 2012;70(1):41-56. doi: 10.1111/j.1753-4887.2011.00440.x.

Shimizu M, Shirakami Y, Sakai H, Kubota M, Kochi T, Ideta T, et al. Chemopreventive potential of green tea catechins in hepatocellular carcinoma. Int J Mol Sci. 2015;16(3):6124-39. doi: 10.3390/ijms16036124.

Jin X, Zheng RH, Li YM. Green tea consumption and liver disease: a systematic review. Liver Int. 2008;28(7):990-6. doi: 10.1111/j.1478-3231.2008.01776.x.

Mazzanti G, Menniti-Ippolito F, Moro PA, Cassetti F, Raschetti R, Santuccio C, et al. Hepatotoxicity from green tea: a review of the literature and two unpublished cases. Eur J Clin Pharmacol. 2009;65(4):331-41. doi: 10.1007/s00228-008-0610-7.

Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A, et al. Flavanones: citrus phytochemical with health-promoting properties. Biofactors. 2017;43(4):495-506. doi: 10.1002/biof.1363.

Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: molecular mechanisms. World J Gastroenterol. 2018;24(16):1679-707. doi: 10.3748/wjg.v24.i16.1679.

Tabeshpour J, Hosseinzadeh H, Hashemzaei M, Karimi G. A review of the hepatoprotective effects of hesperidin, a flavanon glycoside in citrus fruits, against natural and chemical toxicities. Daru. 2020;28(1):305-17. doi: 10.1007/s40199-020-00344-x.

Banjerdpongchai R, Wudtiwai B, Khaw-On P, Rachakhom W, Duangnil N, Kongtawelert P. Hesperidin from citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Tumour Biol. 2016;37(1):227-37. doi: 10.1007/s13277-015-3774-7.

Křížová L, Dadáková K, Kašparovská J, Kašparovský T. Isoflavones. Molecules. 2019;24(6):1076. doi: 10.3390/molecules24061076.

Qiu LX, Chen T. Novel insights into the mechanisms whereby isoflavones protect against fatty liver disease. World J Gastroenterol. 2015;21(4):1099-107. doi: 10.3748/wjg.v21.i4.1099.

Wang X, Wang Y, Xu W, Lan L, Li Y, Wang L, et al. Dietary isoflavones intake is inversely associated with non-alcoholic fatty liver disease, hyperlipidaemia and hypertension. Int J Food Sci Nutr. 2021:1-11. doi: 10.1080/09637486.2021.1910630.

Messina MJ, Wood CE. Soy isoflavones, estrogen therapy, and breast cancer risk: analysis and commentary. Nutr J. 2008;7:17. doi: 10.1186/1475-2891-7-17.

Colacurci N, De Franciscis P, Atlante M, Mancino P, Monti M, Volpini G, et al. Endometrial, breast and liver safety of soy isoflavones plus Lactobacillus sporogenes in post-menopausal women. Gynecol Endocrinol. 2013;29(3):209-12. doi: 10.3109/09513590.2012.738724.

Carbonel AAF, Simões RS, Girão JHC, Sasso GRDS, Bertoncini CRA, Sorpreso ICE, et al. Isoflavones in gynecology. Rev Assoc Med Bras (1992). 2018;64(6):560-4. doi: 10.1590/1806-9282.64.06.560.

Valenti L, Riso P, Mazzocchi A, Porrini M, Fargion S, Agostoni C. Dietary anthocyanins as nutritional therapy for nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2013;2013:145421. doi: 10.1155/2013/145421.

Choi JH, Choi CY, Lee KJ, Hwang YP, Chung YC, Jeong HG. Hepatoprotective effects of an anthocyanin fraction from purple-fleshed sweet potato against acetaminophen-induced liver damage in mice. J Med Food. 2009;12(2):320-6. doi: 10.1089/jmf.2007.0691.

Jiang Z, Chen C, Wang J, Xie W, Wang M, Li X, et al. Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense. J Nat Med. 2016;70(1):45-53. doi: 10.1007/s11418-015-0935-3.

Popović D, Kocić G, Katić V, Zarubica A, Veličković LJ, Ničković VP, et al. Anthocyanins protect hepatocytes against CCl4-induced acute liver injury in rats by inhibiting pro-inflammatory mediators, polyamine catabolism, lipocalin-2, and excessive proliferation of Kupffer cells. Antioxidants (Basel). 2019;8(10):451. doi: 10.3390/antiox8100451.

Valcheva-Kuzmanova S, Borisova P, Galunska B, Krasnaliev I, Belcheva A. Hepatoprotective effect of the natural fruit juice from Aronia melanocarpa on carbon tetrachloride-induced acute liver damage in rats. Exp Toxicol Pathol. 2004;56(3):195-201. doi: 10.1016/j.etp.2004.04.012.

Valcheva-Kuzmanova SV, Popova PB, Galunska BT, Belcheva A. Protective effect of Aronia melanocarpa fruit juice pretreatment in a model of carbon tetrachloride-induced hepatotoxicity in rats. Folia Med (Plovdiv). 2006;48(2):57-62.

Valcheva-Kuzmanova S. Comparative study of the protective effect of Aronia melanocarpa fruit juice and quercetin in a model of paracetamol-induced hepatotoxicity in rats. J Biomed Clin Res. 2015;8(2):118-23. doi:10.1515/jbcr-2015-0161

Kondeva-Burdina M, Valcheva-Kuzmanova S, Markova T, Mitcheva M, Belcheva A. Effects of Aronia melanocarpa Fruit Juice on Isolated Rat Hepatocytes. Pharmacogn Mag. 2015;11(Suppl 4):S592-7. doi: 10.4103/0973-1296.172967.

Chang HC, Peng CH, Yeh DM, Kao ES, Wang CJ. Hibiscus sabdariffa extract inhibits obesity and fat accumulation, and improves liver steatosis in humans. Food Funct. 2014;5(4):734-9. doi: 10.1039/c3fo60495k.

Guo H, Zhong R, Liu Y, Jiang X, Tang X, Li Z, et al. Effects of bayberry juice on inflammatory and apoptotic markers in young adults with features of non-alcoholic fatty liver disease. Nutrition. 2014;30(2):198-203. doi: 10.1016/j.nut.2013.07.023.

Zhang PW, Chen FX, Li D, Ling WH, Guo HH. A CONSORT-compliant, randomized, double-blind, placebo-controlled pilot trial of purified anthocyanin in patients with nonalcoholic fatty liver disease. Medicine (Baltimore). 2015;94(20):e758. doi: 10.1097/MD.0000000000000758.




DOI: http://dx.doi.org/10.14748/ssp.v8i1.8077

Refbacks

About The Authors

Mehmed Abtulov
Medical University of Varna

Department of Pharmacology and Clinical Pharmacology and Therapeutics, Faculty of Medicine

Stefka Valcheva-Kuzmanova
Medical University of Varna

Department of Pharmacology and Clinical Pharmacology and Therapeutics, Faculty of Medicine

Font Size


|