Physiologically-based pharmacokinetic (PBPK) modeling and simulation have become an integral part of the drug development process. This approach is a mathematical technique using a series of differential equations to predict the pharmacokinetic behavior of drug molecules in humans and animals. The main application of the model to date is its use to translate in vitro data to predict and assess possible drug interactions at the level of biotransformation arising from inhibition or induction of metabolizing enzymes. These models provide numerous advantages over static models, as they include both drug-specific physico-chemical properties and system-specific physiologic factors, thus being able to predict pharmacokinetic behavior as much as possible and to predict possible drug interactions with high probability. That is why these models have already received regulatory approval and are routinely used to predict cytochrome P450-mediated drug interactions.
Hartmanshenn C, Scherholz M, Androulakis IP. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. J Pharmacokinet Pharmacodyn. 2016;43(5):481-504. http://dx.doi.org/10.1007/s10928-016-9492-y
Yoshida K, Budha N, Jin JY. Impact of physiologically based pharmacokinetic models on regulatory reviews and product labels: Frequent utilization in the field of oncology. Clin Pharmacol Ther. 2017;101(5):597-602. http://dx.doi.org/10.1002/cpt.622
Радева-Илиева М, Кирилов Б, Георгиев К. Потенциални лекарствени взаимодействия при лечение с тирозин киназни инхибитори. Годишник по Болнична фармация. 2019, 5(1), 60-67. http://dx.doi.org/10.14748/ahp.v5i1.6059
Georgiev K, Hvarchanova N, Georgieva M, Kanazirev B. Potential drug-drug interactions in heart failure patients. International Journal of Pharmacy and Pharmaceutical Sciences. 2019, 11(9), 37-41. https://doi.org/10.22159/ijpps.2019v11i9.33585
Georgiev K, Hvarchanova N, Georgieva M, Kanazirev B. Potential drug interactions in heart failure patients involving cardiac glycosides. International Journal of Pharmaceutical Research 2019, 11(2), 524-529. https://doi.org/10.31838/ijpr/2019.11.02.062
Караиванова М, Пейчев Л, Делев Д, Георгиев Ст. Лекарствени взаимодействия. ТЕА Дизайн ООД. 2018; с.10-35.
Georgiev KD, Hvarchanova N, Georgieva M, Kanazirev B. The role of the clinical pharmacist in the prevention of potential drug interactions in geriatric heart failure patients. Int J Clin Pharm. 2019;41(6):1555-1561. https://doi.org/10.1007/s11096-019-00918-z
Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152(1):9-20. http://dx.doi.org/10.1038/sj.bjp.0707305
Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design--a review. Curr Top Med Chem. 2010;10(1):95-115. https://doi.org/10.2174/156802610790232260
Zhou W, Wang Y, Lu A, Zhang G. Systems Pharmacology in Small Molecular Drug Discovery. Int J Mol Sci. 2016;17(2):246. http://dx.doi.org/10.3390/ijms17020246
Peters SA, Ungell AL, Dolgos H. Physiologically based pharmacokinetic (PBPK) modeling and simulation: applications in lead optimization. Curr Opin Drug Discov Devel. 2009;12(4):509-518.
Jones HM, Chen Y, Gibson C, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247-262. https://doi.org/10.1002/cpt.37
Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51:45-73. http://dx.doi.org/10.1146/annurev-pharmtox-010510-100540
Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407-484. http://dx.doi.org/10.1177/074823379701300401
Jones HM, Parrott N, Jorga K, Lavé T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45(5):511-542. http://dx.doi.org/10.2165/00003088-200645050-00006
Teorell T. Kinetics of distribution of substances administered to the body. I. The extravascular modes of administration. Arch Int Pharmacodyn Thér. 1937;57:205-225.
Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics Syst Pharmacol. 2013;2(8):e63. http://dx.doi.org/10.1038/psp.2013.41
Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the 'bottom up' and 'top down' approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2015;79(1):48-55. http://dx.doi.org/10.1111/bcp.12234
Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, Tucker G. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225-237. http://dx.doi.org/10.1208/s12248-009-9099-y
Wang L, Chiang C, Liang H, et al. How to Choose In Vitro Systems to Predict In Vivo Drug Clearance: A System Pharmacology Perspective. Biomed Res Int. 2015;2015:857327. http://dx.doi.org/10.1155/2015/857327
Wilkinson GR, Shand DG. Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377-390. http://dx.doi.org/10.1002/cpt197518437
https://www.certara.com/services/simcyp-pbpk/
https://www.simulations-plus.com/software/gastroplus/
Kuepfer L, Niederalt C, Wendl T, Schlender JF, Willmann S, Lippert J, Block M, Eissing T, Teutonico D. Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model. CPT Pharmacometrics Syst Pharmacol. 2016;5(10):516-531. http://dx.doi.org/10.1002/psp4.12134
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm
Дитова М, Калайджиев К, Стоев С, Лебанова Х, Григоров Е, Гетов И. Преглед на регулаторните изисквания за проследяване на безопасността на лекарства и хранителни добавки от растителен произход. Социална медицина. 2013;21(4):39-42.
Georgiev KD. Study of Herbal-Drug Interactions (HDIs) Using in Silico Methods – Mission (Im)Possible. Arch Pharm & Pharmacol Res. 2019;2(3):1-2. http://dx.doi.org/10.33552/APPR.2019.02.000540.