Scientific Online Resource System

Annual for Hospital Pharmacy

Diabetes mellitus and hyperglycemia - pathogenesis: focus on SGLT inhibitors

Hristina Nocheva, Mariana Yoncheva, Valentina Belcheva, Evgeni Grigorov

Abstract

Diabetes mellitus is characterized mainly by hyperglycemia, but hypoglycemic conditions are also possible under certain circumstances. The reabsorption of the solutes filtered through the renal basement membrane - sugars, anions, vitamins, short-chain fatty acids, is due to a 12-member family of transport proteins (solute carrier family 5, SLC5), incorporated into the tubular membranes. The aim of this article is to highlight the positive effects of SGLT inhibitors in clinical practice.


Keywords

diabetes mellitus, hyperglycemia, pathogenesis, SGLT inhibitors

Full Text


References

Kaiser N, Leibowitz G, Nesher R. Glucotoxicity and beta-cell failure in type 2 diabetes mellitus. J Pediatr Endocrinol Metab. 2003;16(1):5-22. DOI:10.1515/jpem.2003.16.1.5

Tatulashvili S, Fagherazzi G, Dow C, Cohen R, Fosse S, Bihan H. Socioeconomic inequalities and type 2 diabetes complications: A systematic review. Diabetes Metab. 2020;46(2):89-99. DOI:10.1016/j.diabet.2019.11.00

Triggle CR, Ding H. A review of endothelial dysfunction in diabetes: a focus on the contribution of a dysfunctional eNOS. Journal of the American Society of Hypertension. 2010;4(3):102-115. DOI:10.1016/ j.jash.2010.02.004 International Diabetes Federation. IDF diabetes Atlas. 6th ed. Brussels: International Diabetes Federation, 2013.

Guyton and Hall Textbook of Medical Physiology, 13th ed, chapter 66, Digestion and absorption in the gastrointestinal tract. 2016.

Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch. 2004;447(5):510–518. DOI:10.1007/s00424-003-1063-6

Bisignano P, Ghezzi C, Jo H, Polizzi NF, Althoff T, Kalyanaraman C, Friemann R, Jacobson MP, Wright EM, Grabe M. Inhibitor binding mode and allosteric regulation of Na+-glucose symporters. Nat Commun. 2018;7;9(1):5245

DOI:10.1038/s41467-018-07700-1

Scheepers A, Joost H-G, Schurmann A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enteral Nutr. 2004;28(5):364-371. DOI:10.1177/0148607104028005364

Poulsen SB, Fenton RA, Rieg T. Sodium-glucose cotransport. Curr. Opin. Nephrol. Hypertens. 2015;24(5):463-9. DOI:10.1097/MNH.0000000000000152

Hediger M, Kanai Y, You G, Nussberger S. Mammalian ioncoupled solute transporters. J Physiol. 1995;482(P):7S-17S. DOI:10.1113/jphysiol.1995.sp020559

Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91(2):733-794. DOI:10.1152/physrev.00055.2009

Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med. 2010;27(2):136-42. DOI:10.1111/j.1464-5491.2009.02894.x

DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nature Reviews Nephrology. 2016;13(1):11-26. DOI:10.1038/nrneph.2016.170.

Wright E, Hirayama B, Loo D. Active sugar transport in health and disease. J Intern Med. 2007: 261(1):32–43. DOI:10.1111/j.1365-2796.2006.01746.x

Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, Koepsell H, Thomson SC, Rieg T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Ren Physiol. 2014;306(2):F194-204. DOI:10.1152/ajprenal.00520.2013

Kaur P, Behera BS, Singh S, Munshi A. The pharmacological profile of SGLT2 inhibitors: Focus on mechanistic aspects and pharmacogenomic. Eur J Pharmacol. 2021;904:174169. DOI:10.1016/j.ejphar.2021.174169.

Ehrenkranz JR, Lewis NG, Kahn CR, Roth J. Phlorizin: a review. Diabetes Metab Res Rev. 2005;21(1):31-38. DOI:10.1002/dmrr.532

Rossetti L, Shulman GI, Zawalich W, DeFronzo RA. Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest. 1987;80(4):1037-1044. DOI:10.1172/JCI113157

Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest. 1987;79(5):1510-1515. DOI:10.1172/JCI112981

Kahn BB, Shulman GI, DeFronzo RA, Cushman SW, Rossetti L. Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression. J Clin Invest. 1991;87(2):561-570. DOI:10.1172/JCI115031

Fujita Y, Inagaki N. Renal sodium glucose cotransporter 2 inhibitors as a novel therapeutic approach to treatment of type 2 diabetes: Clinical data and mechanism of action. J Diab Invest. 2014;5(3):265-275. DOI:10.1111/jdi.12214

Roper NA, Bilous RW, Kelly WF, Unwin NC, Connolly VM. Excess mortality in a population with diabetes and the impact of material deprivation: longitudinal, population based study. BMJ. 2001;322(7299):1389-1393. DOI:10.1136/bmj.322.7299.1389

Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. JACC Basic Transl Sci. 2020;5(6): 632-644. DOI:10.1016/j.jacbts.2020.02.004

Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10year followup of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577-1589. DOI:10.1056/NEJMoa0806470

Hayward RA, Reaven PD, Wiitala WL, Bahn GD, Reda DJ, Ge L, McCarren M, Duckworth WC, Emanuele NV. Followup of glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015; 372(23):2197-2206. DOI:10.1056/NEJMoa1414266

Ferrannini E, DeFronzo RA. Impact of glucoselowering drugs on cardiovascular disease in type 2 diabetes. Eur Heart J. 2015;36(34):2288–2296. DOI: 10.1093/eurheartj/ehv239

DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia. 2010;53(7):1270-1287. DOI:10.1007/s00125-010-1684-1

Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545-2559. DOI:10.1056/NEJMoa0802743

Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560-2572. DOI:10.1056/NEJMoa0802987

Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven D, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–139. DOI:10.1056/NEJMoa0808431

Look Ahead Research Group. Eight-year weight losses with an intensive lifestyle intervention: the look AHEAD study. Obesity (Silver Spring). 2014;22:5–13. DOI:10.1002/oby.20662

Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, Broedl UC, Woerle HJ. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499-508. DOI:10.1172/JCI72227

Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016; 18:783-794.

Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle H, Broedl UC, Inzucchi SE. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl J Med. 2015;373(22):2117-2128. DOI:10.1056/NEJMoa1504720

Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311-322. DOI:10.1056/NEJMoa1603827

Di Franco A, Cantini G, Tani A, Coppini R, Zecchi-Orlandini S, Raimondi L, Luconi M, Mannucci E. Sodium-dependent glucose transporters (SGLT) in human ischemic heart: a new potential pharmacological target. Int J Cardiol. 2017;243:86-90. DOI:10.1016/j.ijcard.2017.05.032

García-Ropero Á, Vargas-Delgado AP, Santos-Gallego CG, Badimon JJ. Inhibition of Sodium Glucose Cotransporters Improves Cardiac Performance. International Journal of Molecular Sciences. 2019;20(13):3289. DOI:10.3390/ijms20133289.

Patel K, Carbone A. Sodium-Glucose Cotransporters as Potential Therapeutic Targets in Patients With Type 1 Diabetes Mellitus: An Update on Phase 3 Clinical Trial Data. Ann Pharmacother. 2019 Dec; 53(12):1227-1237.DOI:10.1177/1060028019859323..

Hamouda NN, Sydorenko V, Qureshi MA, Alkaabi JM, Oz M, Howarth FC. Dapagliflozin reduces the amplitude of shortening and Ca2+ transient in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem. 2014;400(1-2):57-68. DOI:10.1007/s11010-014-2262-5

Baartscheer A, Schumacher CA, Wüst RCI, Fiolet JWT, Stienen GJM, Coronel R, Zuurbier CJ. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2016;60(3):568-573. DOI:10.1007/s00125-016-4134-x

Аndreadou I, Efentakis P, Balafas E, Togliatto G, Davos CH, Varela A, Dimitriu C, Nikolaou P-E, Maratu E, Lambadiari V, Ikonomidis I, Kostomitsopoulos N, Bizzi M, Dimitriadis G, Iliodromitis, E. Empagliflozin Limits Myocardial Infarction in Vivo and Cell Death in Vitro: Role of STAT3, Mitochondria, and Redox Aspects. Front Physiol. 2017;19(8):1077. DOI:10.3389/fphys.2017.01077

Andreadou I, Bell RM, Bøtker HE, Zuurbier CJ. SGLT2 inhibitors reduce infarct size in reperfused ischemic heart and improve cardiac function during ischemic episodes in preclinical models. Biochim Biophys Acta Mol Basis Dis. 2020;1866(7):165770. DOI:10.1016/j.bbadis.2020.165770

Larsen TS, Aasum E. Metabolic (In)Flexibility of the Diabetic Heart. Cardiovasc Drugs Ther. 2008;22(2):91-5. DOI:10.1007/s10557-008-6083-1

Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G. Canagliflozin and renal outcomes in Type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295-2306. DOI:10.1056/NEJMoa1811744.

Gimeno-Orna JA, Blasco-Lamarca Y, Campos-Gutierrez B, Molinero-Herguedas E, Lou-Arnal LM, Garcia-Garcia B. Risk of mortality associated to chronic kidney disease in patients with type 2 diabetes mellitus: a 13-year follow-up. Nefrologia. 2015;35:487-492. DOI:10.1016/j.nefro.2015.05.025

Ray EC, Miller RG, Demko JE, Costacou T, Kinlough CL, Demko CL, Unruh ML, Orchard TJ, Kleyman TR. Urinary Plasmin (ogen) as a prognostic factor for hypertension. Kidney Int Rep. 2018;3:1434-1442. DOI:10.1016/j.ekir.2018.06.007

Cherney DZI, Zinman B, Inzucchi SE, Koitka-Weber A, Mattheus M, von Eynatten M, Wanner C. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5:610-621. DOI:10.1016/S2213-8587(17)30182-1

Thomson SC, Vallon V. Renal effects of sodium-glucose cotransporter inhibitors. Am J Cardiol. 2019;124(Suppl. 1):S28-S35. DOI:10.1016/j.amjcard.2019.10.027

van Bommel EJM, Muskiet MHA, van Baar MJB, Tonneijck L, Smits MM, Emanuel AL, Bozovic A, Danser AHJ, Geurts F, Hoorn EJ, Touw DJ, Larsen EL, Poules HE, Kramer MH, Nieuwdorp M, Joles JA, van Raalte DH. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than preglomerular vasoconstriction in metformin- treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int. 2020;97(1):202-212. DOI:10.1016/j.kint.2019.09.013

Liu D, Lv LL. New understanding on the role of proteinuria in progression of chronic kidney disease. Adv Exp Med Biol. 2019;1165:487-500. DOI:10.1007/978-981-13-8871-2_24

Wang J, Chen Y, Xu W, Lu N, Cao J, Yu S. Effects of intensive blood pressure lowering on mortality and cardiovascular and renal outcomes in type 2 diabetic patients: a meta-analysis. 2019;14(4):215362. DOI:10.1371/journal.pone.0215362.

Brady JA, Hallow KM. Model-based evaluation of proximal sodium reabsorption through SGLT2 in health and diabetes and the effect of inhibition with canagliflozin. J Clin Pharmacol. 2018;58(3):377-385. DOI:10.1002/jcph.1030

Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with noninsulin-dependent diabetes. Diabetes. 2005; 54; 3427–3434.DOI:10.2337/diabetes.54.12.3427

Ray EC. Evolving understanding of cardiovascular protection by SGLT2 inhibitors: focus on renal protection, myocardial effects, uric acid, and magnesium balance. Curr Opin Pharmacol. 2020;54:11-17. DOI: 10.1016/j.coph.2020.06.001

Faris RF, Flather M, Purcell H, Poole-Wilson PA, Coats AJ. WITHDRAWN: diuretics for heart failure. Cochrane Database Syst Rev. 2016;4(4):CD003838. DOI:10.1002/14651858.CD003838.pub4.

Kanbay M, Jensen T, Solak Y, Le M, Roncal-Jimenez C, Rivard C, Lanaspa MA, Nakagawa T, Johnson RJ. Uric acid in metabolic syndrome: from an innocent bystander to a central player. Eur J Intern Med. 2016;29:3-8. DOI:10.1016/j.ejim.2015.11.026

Tsai CW, Lin SY, Kuo CC, Huang CC. Serum uric acid and progression of kidney disease: a longitudinal analysis and mini-review. PLoS One. 2017;12(1):e0170393 DOI:10.1371/journal.pone.0170393.

Kim IY, Lee DW, Lee SB, Kwak S. The role of uric acid in kidney fibrosis: experimental evidences for the causal relationship. BioMed Res Int. 2014;2014:638732. DOI:10.1155/2014/638732.

Wang JG, Staessen JA, Fagard RH, Birkenhager WH, Gong L, Liu L. Prognostic significance of serum creatinine and uric acid in older Chinese patients with isolated systolic hypertension. Hypertension. 2001;37:1069-1074. DOI:10.1161/01.HYP.37.4.1069

Grayson PC, Kim SY, LaValley M, Choi HK. Hyperuricemia and incident hypertension: a systematic review and metaanalysis. Arthritis Care Res (Hoboken) 2011;63(1):102-110. DOI:10.1002/acr.20344

Huang H, Huang B, Li Y, Huang Y, Li J, Yao H, Jing X, Chen J, Wang J. Uric acid and risk of heart failure: a systematic review and meta-analysis. Eur J Heart Fail. 2014;16(1):15-24. DOI:10.1093/eurjhf/hft132

Bailey CJ. Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes Metab. 2019;21(6):1291-1298. DOI:10.1111/dom.13670

Saugstad OD. Role of xanthine oxidase and its inhibitor in hypoxia: reoxygenation injury. Pediatrics. 1996;98:103–107. PMID: 8668378

White CR, Darley-Usmar V, Berrington WR, McAdams M, Gore JZ, Thompson JA, Parks DA, Tarpey MM, Freeman BA. Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc Natl Acad Sci USA. 1996;93:8745–8749. DOI:10.1073/pnas.93.16.8745

Cappola TP, Kass DA, Nelson GS, Berger RD, Rosas GO, Kobeissi ZA, Marbán E, Hare JM. Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation. 2001;104:2407–2411. DOI:10.1161/hc4501.098928

Ekelund UEG, Harrison RW, Shokek O, Thakkar RN, Tunin RS, Senzaki H, Kass DA, Marbán E, Hare JM. Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ Res. 1999;85(5):437-445. DOI:10.1161/01.res.85.5.437

de Jong JW, Schoemaker RG, de Jonge R, Bernocchi P, Keijzer E, Harrison R, Sharma HS, Ceconi C. Enhanced expression and activity of xanthine oxidoreductase in the failing heart. J Mol Cell Cardiol. 2000;32:2083-2089. DOI:10.1006/jmcc.2000.1240

Saavedra WF, Paolocci N, St John ME, Skaf MW, Steward GC, Xie J-S, Harrison RW, Zeichner J, Mudrick D, Marban E, Kass DA, Hare JM. Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ Res. 2002;90(3):297-304. DOI:10.1161/hh0302.104531

Pham PC, Pham PM, Pham SV, Miller JM, Pham PT. Hypomagnesemia in patients with type 2 diabetes. Clin J Am Soc Nephrol 2007;2(2):366-373. DOI:10.2215/CJN.02960906

Moshfegh A, Goldman J, Ahuja J, Rhodes D, LaComb R. What we eat in America, NHANES 2005–2006. Usual Nutrient Intakes From Food And Water Compared to 1997 Dietary Reference Intakes for Vitamin D, Calcium, Phosphorus, and Magnesium. US Department of Agriculture ARS; 2009. Available from: http://www.ars.usda.gov/ba/bhnrc/fsrg.

Kurstjens S, Smeets B, Overmars-Bos C, Dijkman HB, den Braanker DJW, de Bel T, Bindels RJM, Tack CJJ, Hoenderop JGJ, de Baaij JHF. Renal phospholipidosis and impaired magnesium handling in high-fat-diet-fed mice. FASEB J. 2019;33(6):7192-7201. DOI: 10.1096/fj.201801778RR

Lennon EJ, Lemann J Jr, Piering WF, Larson LS. The effect of glucose on urinary cation excretion during chronic extracellular volume expansion in normal man. J Clin Invest. 1974; 53:1424-1433. DOI:10.1172/JCI107690

Lameris AL, Monnens LA, Bindels RJ, Hoenderop JG. Druginduced alterations in Mg2+ homoeostasis. Clin Sci (Lond). 2012;123(1):1-14. DOI: 10.1042/CS20120045

Elin RJ: Assessment of magnesium status. Clin Chem. 1987; 33:1965-1970. PMID:3315301

Elin RJ. Assessment of magnesium status for diagnosis and therapy. Magnes Res. 2010;23(4):S194-198. DOI:10.1684/mrh.2010.0213

Fang X, Wang K, Han D, He X, Wei J, Zhao L, Imam MU, Ping Z, Li Y, Xu Y, MinJ, Wang F. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and allcause mortality: a dose-response meta-analysis of prospective cohort studies. BMC Med. 2016;14(1):210. DOI:10.1186/s12916-016-0742-z.

Angkananard T, Anothaisintawee T, Eursiriwan S, Gorelik O, McEvoy M, Attia J, Thakkinstian A. The association of serum magnesium and mortality outcomes in heart failure patients: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95:e5406. DOI:10.1097/MD.0000000000005406.

Kunutsor SK, Khan H, Laukkanen JA. Serum magnesium and risk of new onset heart failure in men: the Kuopio Ischemic Heart Disease Study. Eur J Epidemiol. 2016;31:1035-1043. DOI:10.1007/s10654-016-0164-4

Wannamethee SG, Papacosta O, Lennon L, Whincup PH. Serum magnesium and risk of incident heart failure in older men: The British Regional Heart Study. Eur J Epidemiol. 2018; 33:873-882. DOI:10.1007/s10654-018-0388-6

Nishihara T, Yamamoto E, Sueta D, Fujisue K, Usuku H, Oike F, Takae M, Arima Y, Araki S, Takashio S, Nakamura T, Suzuki S, sakamoto K, Soejima H, Kawano H, Kaikita K, Tsujita K. Clinical significance of serum magnesium levels in patients with heart failure with preserved ejection fraction. Medicine (Baltimore). 2019;98(38):e17069. DOI:10.1097/MD.0000000000017069

Tangvoraphonkchai K, Davenport A. Magnesium and cardiovascular disease. Adv Chronic Kidney Dis. 2018;25(3):251-260. DOI:10.1053/j.ackd.2018.02.010

Lima MC, Ajzen HA, Ribeiro AB, Andrade U, Ramos OL. Effect of angiotensin II on urinary magnesium, calcium, and sodium excretion in normal subjects. Am J Med Sci. 1972; 263:173-179. DOI:10.1097/00000441-197203000-00007

Scheen AJ, Luyckx FH. Obesity and liver disease. Best Pract Res Clin Endocrinol Metab. 2002;16:703-716. DOI:10.1053/beem.2002.0225

European Association for the Study of the Liver, European Association for the Study of Diabetes, European Association for the Study of Obesity. EASL-EASDEASO Clinical Practice disease. J Hepatol. 2016;64:1388-402. DOI:10.1016/j.jhep.2015.11.004

Younossi Z, Tacke F, Arrese M, Sharma BC, Mostafa I, Bugianesi E, Wong VW-S, Yilmaz Y, George J, Fan J, Vos MB. Global perspectives on non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Hepatology. 2018;69(6):2672-2682 DOI:10.1002/hep.30251.

Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62:S47-64. DOI:10.1016/j.jhep.2014.12.012

Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut. 2017;66(6):1138-1153. DOI:10.1136/gutjnl-2017-313884

Scheen AJ, Esser N, Paquot N. Antidiabetic agents: Potential anti-inflammatory activity beyond glucose control. Diabetes Metab. 2015;41:183–194. DOI:10.1016/j.diabet.2015.02.003

Scheen AJ. Beneficial effects of SGLT2 inhibitors on fatty liver in type 2 diabetes: A common comorbidity associated with severe complications. Diabetes Metab. 2019; 45(3): 213–223. DOI:10.1016/j.diabet.2019.01.008.

Karagiannis T, Tsapas A, Athanasiadou E, Avgerinos I, Liakos A, Matthews DR, Bekiari E. GLP-1 receptor agonists and SGLT2 inhibitors for older people with type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2021;174:108737. DOI:10.1016/j.diabres.2021.108737

Bonner C, Kerr-Conte J, Gmyr V, Queniat G, Moerman E, Thévenet J, Beaucamps C, Delalleau N, Popescu I, Malaisse WJ, Sener A, Deprez B, Abderrahmani A, Staels B, Pattou F. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015; 21:512–517. DOI:10.1038/nm.3828

Merovci A, Solis-Herrera C, Daniele G, Eldor R, Fiorentino TV, Tripathy D, Xiong J, Perez Z, Norton L, Abdul-Ghani MA, DeFronzo RA. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest. 2014;124:509–514. DOI:10.1172/JCI70704

Stenlöf K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, Canovatchel W, Meininger G. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15(4):372-382. DOI:10.1111/dom.12054

Song P, Onishi A, Koepsell H, Vallon V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opinion on Therapeutic Targets. 2016;20(9):1109–1125. DOI:10.1517/14728222.2016.116880




DOI: http://dx.doi.org/10.14748/ahp.v7i1.8074

Refbacks

Article Tools
Email this article (Login required)
|