Scientific Online Resource System

Varna Medical Forum

A review of clinically significant interactions between medicines and green tea

Maya Radeva-Ilieva

Abstract

Green tea intake for prevention and/or treatment of diseases is widespread worldwide. Green tea is known for its antioxidant, anti-inflammatory, anti-tumor effects, and others. Tea leaves contain various biologically active substances and their concomitant use with medicinal products carries the risk of potentially dangerous interactions. The aim of the present study was to assess the clinical significance of interactions that may occur after co-administration of drugs with green tea. A thorough review of the scientific literature was conducted and a number of studies, both in experimental animals and in humans that reported pharmacokinetic interactions with certain drugs were identified. Most authors suggest that the observed interactions are due to the ability of the green tea extract, as well as the contained catechins, mainly epigallocatechin-3-gallate (EGCG), to modulate the activity of some drug-metabolizing enzymes and transmembrane transporters. As a result, changes in plasma drug concentrations leading to an increased risk of toxic effects or reduced therapy effectiveness are observed. Drug interactions have also been observed after simultaneous intake of certain medications and caffeine, which is also present in tea leaves. In conclusion, concomitant use of drugs with green tea, EGCG or caffeine, in any form, may lead to clinically significant drug interactions and adverse patient outcomes.


Keywords

drug interactions, pharmacokinetic, green tea, epigallocatechin-3-gallate (EGCG), caffeine

Full Text


References

Abdelkawy KS, Abdelaziz RM, Abdelmageed AM, Donia AM, El-Khodary NM. Effects of Green tea extract on atorvastatin pharmacokinetics in healthy volunteers. Eur J Drug Metab Pharmacokinet. 2020 Jun; 45(3): 351-360. doi:10.1007/s13318-020-00608-6

Albassam AA, Markowitz JS. An appraisal of drug-drug interactions with Green tea (Camellia sinensis). Planta Med. 2017 Apr; 83(6): 496-508. doi:10.1055/s-0043-100934

Alemdaroglu NC, Dietz U, Wolffram S, Spahn-Langguth H, Langguth P. Influence of green and black tea on folic acid pharmacokinetics in healthy volunteers: potential risk of diminished folic acid bioavailability. Biopharm Drug Dispos. 2008 Sep; 29(6): 335-348. doi:10.1002/bdd.617

Amadi CN, Nwachukwu WI. The effects of oral administration of Cola nitida on the pharmacokinetic profile of metoclopramide in rabbits. BMC Pharmacol Toxicol. 2020 Jan; 21(1): 4. doi:10.1186/s40360-019-0379-6

Bag S, Mondal A, Majumder A, Banik A. Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chemistry. 2021 Sep; 371: 131098. doi:10.1016/j.foodchem.2021.131098.

Barcelos RP, Lima FD, Carvalho NR, Bresciani G, Royes LF. Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr Res. 2020 Aug; 80: 1-17. doi:10.1016/j.nutres.2020.05.005

Basheer L, Kerem Z. Interactions between CYP3A4 and Dietary Polyphenols. Oxid Med Cell Longev. 2015 Jun; 2015: 854015. doi:10.1155/2015/854015

Belayneh A, Molla F. The effect of coffee on pharmacokinetic properties of drugs: A review. BioMed Research International. 2020 Jul; 2020: 7909703. doi:10.1155/2020/7909703

Cai ZY, Li XM, Liang JP, et al. Bioavailability of tea catechins and its improvement. Molecules. 2018 Sep; 23(9): 2346. doi:10.3390/molecules23092346

Camandola S, Plick N, Mattson MP. Impact of coffee and cacao purine metabolites on neuroplasticity and neurodegenerative disease. Neurochem Res. 2019 Jan; 44(1): 214-227. doi:10.1007/s11064-018-2492-0

Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000 Aug; 39(2): 127-153. doi:10.2165/00003088-200039020-00004

Chakraborty M, Kamath JV, Bhattacharjee A. Potential interaction of Green tea extract with hydrochlorothiazide on diuretic activity in rats. Int Sch Res Notices. 2014 Nov; 2014: 273908. doi:10.1155/2014/273908

Choi JS, Burm JP. Effects of oral epigallocatechin gallate on the pharmacokinetics of nicardipine in rats. Arch Pharm Res. 2009 Dec; 32(12): 1721-1725. doi:10.1007/s12272-009-2209-7

Chu KO, Pang CC. Pharmacokinetics and disposition of Green tea catechins. In: Malangu N, editor. Pharmacokinetics and adverse effects of drugs – mechanisms and risks factors [Internet]. London: IntechOpen; 2018 May [cited 2023 Jul 10]. Available from: https://www.intechopen.com/chapters/60659 doi: 10.5772/intechopen.74190

Chung JH, Choi DH, Choi JS. Effects of oral epigallocatechin gallate on the oral pharmacokinetics of verapamil in rats. Biopharm Drug Dispos. 2009 Mar; 30(2): 90-93. doi:10.1002/bdd.644

Darweesh RS, El-Elimat T, Zayed A, et al. The effect of grape seed and green tea extracts on the pharmacokinetics of imatinib and its main metabolite, N-desmethyl imatinib, in rats. BMC Pharmacol Toxicol. 2020 Nov; 21(1): 77. doi:10.1186/s40360-020-00456-9

Dresser GK, Urquhart BL, Proniuk J, et al. Coffee inhibition of CYP3A4 in vitro was not translated to a grapefruit-like pharmacokinetic interaction clinically. Pharmacol Res Perspect. 2017 Oct; 5(5): e00346. doi:10.1002/prp2.346

Fiani B, Zhu L, Musch BL, et al. The neurophysiology of caffeine as a central nervous system stimulant and the resultant effects on cognitive function. Cureus. 2021 May; 13(5): e15032. doi:10.7759/cureus.15032

Gahr M. Koffein, das am häufigsten konsumierte Psychostimulans: eine narrative Übersichtsarbeit [Caffeine, the most frequently consumed psychostimulant: a narrative review article]. Fortschr Neurol Psychiatr. 2020 May; 88(5): 318-330. doi:10.1055/a-0985-4236

Ge B, Zhang Z, Zuo Z. Updates on the clinical evidenced herb-warfarin interactions. Evid Based Complement Alternat Med. 2014 Mar; 2014: 957362. doi:10.1155/2014/957362

Ge J, Tan BX, Chen Y, et al. Interaction of green tea polyphenol epigallocatechin-3-gallate with sunitinib: potential risk of diminished sunitinib bioavailability. J Mol Med (Berl). 2011 Jun; 89(6): 595-602. doi:10.1007/s00109-011-0737-3

Georgiev KD, Radeva-Ilieva M, Stoeva S, Zhelev I. Isolation, analysis and in vitro assessment of CYP3A4 inhibition by methylxanthines extracted from Pu-erh and Bancha tea leaves. Sci Rep. 2019 Sep; 9(1): 13941. doi:10.1038/s41598-019-50468-7

Golden EB, Lam PY, Kardosh A, et al. Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood. 2009 Jun; 113(23): 5927-5937. doi:10.1182/blood-2008-07-171389

Han X, Zhang H, Hao H, Li H, Guo X, Zhang D. Effect of epigallocatechin-3-gallate on the pharmacokinetics of amlodipine in rats. Xenobiotica. 2019 Aug; 49(8): 970-974. doi:10.1080/00498254.2018.1519732

Hegazy SK. The effect of Green tea on sildenafil pharmacokinetics in Egyptian healthy volunteers. British journal of pharmaceutical research. 2014 Jan; 4: 289-300. doi:10.9734/BJPR/2014/6905

Henning SM, Choo JJ, Heber D. Nongallated compared with gallated flavan-3-ols in green and black tea are more bioavailable. J Nutr. 2008 Aug; 138(8): 1529S-1534S. doi:10.1093/jn/138.8.1529S

Hladun O, Papaseit E, Martín S, et al. Interaction of energy drinks with prescription medication and drugs of abuse. Pharmaceutics. 2021 Sep; 13(10): 1532. doi:10.3390/pharmaceutics13101532

Ikarashi N, Ogawa S, Hirobe R, et al. Epigallocatechin gallate induces a hepatospecific decrease in the CYP3A expression level by altering intestinal flora. Eur J Pharm Sci. 2017 Mar; 100: 211-218. doi:10.1016/j.ejps.2017.01.022

Khan N, Mukhtar H. Tea polyphenols in promotion of human health. Nutrients. 2018 Dec; 11(1): 39. doi:10.3390/nu11010039

Kim TE, Ha N, Kim Y, et al. Effect of epigallocatechin-3-gallate, major ingredient of green tea, on the pharmacokinetics of rosuvastatin in healthy volunteers. Drug Des Devel Ther. 2017 May; 11: 1409-1416. doi:10.2147/DDDT.S130050

Kim TE, Shin KH, Park JE, et al. Effect of green tea catechins on the pharmacokinetics of digoxin in humans. Drug Des Devel Ther. 2018 Jul; 12: 2139-2147. doi:10.2147/DDDT.S148257

Knop J, Misaka S, Singer K, et al. Inhibitory effects of Green tea and (-)-epigallocatechin gallate on transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-glycoprotein. PLoS One. 2015 Oct; 10(10): e0139370. doi:10.1371/journal.pone.0139370

Koller D, Vaitsekhovich V, Mba CE, et al. Effective quantification of 11 tyrosine kinase inhibitors and caffeine in human plasma by validated LC-MS/MS method with potent phospholipids clean-up procedure. Application to therapeutic drug monitoring. Talanta. 2020 Feb; 208: 120450. doi:10.1016/j.talanta.2019.120450

Kot M, Daniel WA. The relative contribution of human cytochrome P450 isoforms to the four caffeine oxidation pathways: an in vitro comparative study with cDNA-expressed P450s including CYP2C isoforms. Biochem Pharmacol. 2008 Aug; 76(4): 543-551. doi:10.1016/j.bcp.2008.05.025

Kovacić S. Vuković S, Kocijan-Lovko S, Seferović M. Combination of fluvoxamine and analgesics can cause serotonin syndrome. European Journal of Psychiatry. 2009 Mar; 23(1): 47-51. doi:10.4321/S0213-61632009000100005

Leite PM, Martins MAP, Castilho RO. Review on mechanisms and interactions in concomitant use of herbs and warfarin therapy. Biomed Pharmacother. 2016 Oct; 83: 14-21. doi:10.1016/j.biopha.2016.06.012

Li C, Choi JS. Effects of epigallocatechin gallate on the bioavailability and pharmacokinetics of diltiazem in rats. Pharmazie. 2008 Nov; 63(11): 815-818.

Maher HM, Alzoman NZ, Shehata SM, Abahussain AO. UPLC-ESI-MS/MS study of the effect of green tea extract on the oral bioavailability of erlotinib and lapatinib in rats: Potential risk of pharmacokinetic interaction. J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Apr; 1049-1050: 30-40. doi:10.1016/j.jchromb.2017.02.029

Medina-López R, Vara-Gama N, Soria-Arteche O, Moreno-Rocha LA, López-Muñoz FJ. Pharmacokinetics and pharmacodynamics of (S)-ketoprofen co-administered with caffeine: A preclinical study in arthritic rats. Pharmaceutics. 2018 Jan; 10(1): 20. doi:10.3390/pharmaceutics10010020

Misaka S, Kawabe K, Onoue S, et al. Green tea extract affects the cytochrome P450 3A activity and pharmacokinetics of simvastatin in rats. Drug Metab Pharmacokinet. 2013 Dec; 28(6): 514-518. doi:10.2133/dmpk.dmpk-13-nt-006

Misaka S, Miyazaki N, Fukushima T, Yamada S, Kimura J. Effects of green tea extract and (-)-epigallocatechin-3-gallate on pharmacokinetics of nadolol in rats. Phytomedicine. 2013 Nov; 20(14): 1247-1250. doi:10.1016/j.phymed.2013.07.003

Misaka S, Yatabe J, Müller F, et al. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin Pharmacol Ther. 2014 Apr; 95(4): 432-438. doi:10.1038/clpt.2013.241

Mouly S, Lloret-Linares C, Sellier PO, Sene D, Bergmann JF. Is the clinical relevance of drug-food and drug-herb interactions limited to grapefruit juice and Saint-John's Wort?. Pharmacol Res. 2017 Apr; 118: 82-92. doi:10.1016/j.phrs.2016.09.038

Obaidat A, Roth M, Hagenbuch B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol. 2012 Feb; 52: 135-151. doi:10.1146/annurev-pharmtox-010510-100556

Ohishi T, Goto S, Monira P, Isemura M, Nakamura Y. Anti-inflammatory action of Green tea. Antiinflamm Antiallergy Agents Med Chem. 2016 Sep; 15(2): 74-90. doi:10.2174/1871523015666160915154443

Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A review of the role of Green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients. 2019 Feb; 11(2): 474. doi:10.3390/nu11020474

Reygaert WC. Green tea catechins: Their use in treating and preventing infectious diseases. Biomed Res Int. 2018 Jul; 2018: 9105261. doi:10.1155/2018/9105261

Sanchez JM. Methylxanthine content in commonly consumed foods in Spain and determination of its intake during consumption. Foods. 2017 Dec; 6(12): 109. doi:10.3390/foods6120109

Satoh T, Fujisawa H, Nakamura A, Takahashi N, Watanabe K. Inhibitory effects of eight Green tea catechins on cytochrome P450 1A2, 2C9, 2D6, and 3A4 activities. J Pharm Pharm Sci. 2016 Apr-Jun; 19(2): 188-197. doi:10.18433/J3MS5C

Scholl C, Lepper A, Lehr T, et al. Population nutrikinetics of green tea extract. PLoS One. 2018 Feb; 13(2): e0193074. doi:10.1371/journal.pone.0193074

Song Y, Li C, Liu G, et al. Drug-metabolizing cytochrome P450 enzymes have multifarious influences on treatment outcomes. Clin Pharmacokinet. 2021 May; 60(5): 585-601. doi:10.1007/s40262-021-01001-5

Tallei TE, Fatimawali, Niode NJ, et al. A comprehensive review of the potential use of Green tea polyphenols in the management of COVID-19. Evidence-based complementary and alternative medicine : eCAM. 2021 Dec; 7170736. doi:10.1155/2021/7170736

Tan CSS, Lee SWH. Warfarin and food, herbal or dietary supplement interactions: A systematic review. Br J Clin Pharmacol. 2021 Feb; 87(2): 352-374. doi:10.1111/bcp.14404

Tang GY, Meng X, Gan RY, et al. Health functions and related molecular mechanisms of tea components: an update review. Int J Mol Sci. 2019 Dec; 20(24): 6196. doi:10.3390/ijms20246196

Thorn CF, Aklillu E, McDonagh EM, Klein TE, Altman RB. PharmGKB summary: caffeine pathway. Pharmacogenet Genomics. 2012 May; 22(5): 389-395. doi:10.1097/FPC.0b013e3283505d5e

Truong VL, Jeong WS. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship. Int J Mol Sci. 2021 Aug; 22(17): 9109. doi:10.3390/ijms22179109

Urry E, Jetter A, Landolt HP. Assessment of CYP1A2 enzyme activity in relation to type-2 diabetes and habitual caffeine intake. Nutr Metab (Lond). 2016 Oct; 13: 66. doi:10.1186/s12986-016-0126-6

Vischini G, Niscola P, Stefoni A, Farneti F. Increased plasma levels of tacrolimus after ingestion of green tea. Am J Kidney Dis. 2011 Aug; 58(2): 329. doi:10.1053/j.ajkd.2011.05.013

Werba JP, Misaka S, Giroli MG, et al. Update of green tea interactions with cardiovascular drugs and putative mechanisms. J Food Drug Anal. 2018 Apr; 26(2S): S72-S77. doi:10.1016/j.jfda.2018.01.008

Xing L, Zhang H, Qi R, Tsao R, Mine Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with Green tea polyphenols. J Agric Food Chem. 2019 Jan; 67(4): 1029-1043. doi:10.1021/acs.jafc.8b06146

Yan Z, Zhong Y, Duan Y, et al. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition. 2020 Jun; 6(2): 115-123. doi:10.1016/j.aninu.2020.01.001




DOI: http://dx.doi.org/10.14748/vmf.v12i2.9166

Refbacks

Font Size


|