Scientific Online Resource System

Biomedical Reviews

Application of Carbon Nanotubes for Controlled Release of Growth Factors or Endocannabinoids: A Breakthrough in Biomedicine

Parichehr Hassanzadeh, Fatemeh Atyabi, Rassoul Dinarvand


Carbon nanotubes, the nanostructures with immense potential in various scientific fields such as the regenerative medicine, have emerged as innovative nanosreservoirs with multimodal functionality and application in theranostic sessions. The superior mechanical properties, high thermoelectrical conductivities, or improved solubility and biocompatibility have made CNTs as suitable candidates for biosensing, high-resolution imaging, tissue-engineering, and delivery of a variety of compounds with poor solubility or short half-life. These advanced nanovectors which promote neuronal growth and functional connectivity, have shown great theranostic potential in the central nervous system disorders. Several pioneering works have shown the ability of CNTs for controlled release of drugs or growth factors into the brain. Over the last decade the neurotropic and metabotrophic effects of nerve-growth factor, brain-derived neurothropic factor and endocannabinoid system and their involvement in the mechanism of action of a wide variety of drugs have been the focus of intense research. In order to overcome the rapid degradation and/or non-specific distribution of nerve-growth factor or endocanabinoids, conjugation with CNTs has led to the prolonged effects of these modulating factors. Based on their unique properties, the appropriate application of functionalized CNTs may indeed revolutionize the current biomedical interventions that has been highlighted in the present review.

Full Text


Bramlett HM, Dietrich WD. Progressive damage after

brain and spinal cord injury: pathomechanisms and treat- ment strategies. Prog Brain Res 2007; 161: 125-141. DOI: 10.1016/S0079-6123(06)61009-1

Ricci M, Blasi P, Giovagnoli S, Rossi C. Delivering drugs to the Central Nervous System: a medicinal chemistry or a pharmaceutical technology issue? Curr Med Chem 2006; 13: 1707-1725. PMID:16787219

Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7: 41-53. DOI:10.1038/nrn1824

Mohammadi A, Moghaddam AB, Dinarvand R, Rezaei- Zarchi S. Direct electron transfer of polyphenol oxidase on carbon nanotube surfaces: Application in biosensing. Int J Electrochem Sci 2009; 4: 895-905. (by ESG: www.

Bosi S, Fabbro A, Ballerini L, Prato M. Carbon nanotubes: a promise for nerve tissue engineering? Nanotechnol Rev 2013; 2: 47-57. DOI: 10.1515/ntrev-2012-0067

Sobhani Z, Dinarvand R, Atyabi F, Ghahremani M, Adeli

M. Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int J Nanomedicine 2011; 6: 705-719. DOI:10.2147/IJN.S17336

Yanev S, Aloe L, Fiore M, Chaldakov GN. Neurotrophic and metabotrophic potential of nerve growth factor and brain-derived neurotrophic factor: Linking cardiometabolic and neuropsychiatric diseases. World J Pharmacol 2013; 2: 92-99. DOI: 10.5497/wjp.v2.i4.92

Hassanzadeh P, Hassanzadeh A. Involvement of the neurotrophin and cannabinoid systems in the mecha- nisms of action of neurokinin receptor antagonists. Eur Neuropsychopharmcol 2011; 21: 905-917. doi:10.1016/j. euroneuro.2011.01.002

Hassanzadeh P, Rahimpour S. The cannabinergic system is implicated in the upregulation of central NGF protein by psychotropic drugs. Psychopharmacology 2011; 215:

-141. DOI:10.1007/s00213-010-2120-4

Hassanzadeh P, Hassanzadeh A. Effects of different psy- chotropic agents on the central nerve growth factor protein. Iran J Basic Med Sci 2010; 13: 202-209. (without DOI)

Hassanzadeh P, Hassanzadeh A. Implication of NGF and endocannabinoid signalling in the mechanism of action of sesamol: a multi-target natural compound with therapeutic potential. Psychopharmacology 2013; 229: 571-578. DOI:10.1007/s00213-013-3111-z

Hassanzadeh P, Hassanzadeh A. The CB1 receptor-mediated endocannabinoid signaling and NGF: The novel targets of curcumin. Neurochem Res 2012; 37: 1112-1120. DOI:10.1007/s11064-012-0716-2

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. The endocannabinoid system and NGF are involved in the mechanism of action of resveratrol: a multi-target nutraceutical with therapeutic potential in neuropsychiatric disorders. Psychopharmacology 2016; 233: 1087-1096. DOI:10.1007/s00213-015-4188-3

Lindsay RM. Neurotrophic growth factors and neurodegenerative diseases: therapeutic potential of the neuro-trophins and ciliary neurotrophic factor. Neurobiol Aging 1994; 15: 249-251. PMID:7838303

Jarho P, Urtti A, Pate DW, Suhonen P, Ja¨rvinen T. Increase in aqueous solubility, stability and in vitro corneal permeability of anandamide by hydroxypropyl-ß-cyclodextrin. Int J Pharm 1996; 137: 209-216. SICI:0378- 5173(1996)137:2<209:IIASSA>2.0.ZU;2-8

Liu Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007; 1: 50-56. DOI:10.1021/nn700040t

Shi Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nano-tube-protein conjugates into mammalian cells. J Am Chem Soc 2004; 126: 6850-6851. DOI:10.1021/ja0486059

Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: from toxicology to phar-macology. Adv Drug Deliv Rev 2006; 58: 1460-1470. DOI:10.1016/j.addr.2006.09.015

Saito N, Haniu H, Usui Y, Aoki K, Hara K, Takanashi S, et al. Safe clinical use of carbon nanotubes as inno-vative biomaterials. Chem Rev 2014; 114: 6040−6079. DOI:10.1021/cr400341h

Barone PW, Baik S, Heller DA, Strano MS. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 2005; 4: 86-92. DOI:10.1038/nmat1276

Liu S, Ng AK, Xu R, Wei J, Tan CM, Yang Y, et al. Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale 2010; 2: 2744-2750. DOI:10.1039/c0nr00441c

Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008; 68: 6652-6660. DOI:10.1158/0008-5472.CAN-08-1468

Zhang X, Hui Z, Wan D, Huang H, Huang J, Yuan H, et al. Alginate microsphere filled with carbon nanotube as drug carrier. Int J Biol Macromol 2010; 47: 389-395. DOI:10.1016/j.ijbiomac.2010.06.003

Azimirad V, Hosseinpour M, Shahabi P, Alimohammadi M, Sadighi M, Hatami H. Effects of injection of carbon nanotubes on EEG and results of a behavioral test in rats. Neurophysiology 2015; 47: 198-204. doi:10.1007/s11062- 015-9521-2

Kolosnjaj J, Szwarc H, Moussa F. Toxicity studies of carbon nanotubes. Adv Exp Med Biol 2007; 620: 181-204. PMID:18217344

Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D. Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci 2009; 110: 442-448. DOI:10.1093/ toxsci/kfp100

Bardi G, Tognini P, Ciofani G, Raffa V, Costa M, Pizzorusso T. Pluronic-coated carbon nanotubes do not induce degeneration of cortical neurons in vivo and in vitro. Nanomedicine: Nanotech Biol Med 2009; 5: 96-104. DOI:10.1016/j.nano.2008.06.008

Saito N, Haniu H, Usui Y, Aoki K, Hara K, Takanashi S, et al. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem Rev 2014; 114: 6040−6079. dx.doi. org/10.1021/cr400341h

Ya-Ping S, Kefu F, Yi L, Weijie H. Functionalized carbon nanotubes: properties and applications. Acc Chem Res 2002; 35: 1096-1104. DOI: 10.1021/ar010160v

Turner JN, Shain W, Szarowski DH, Andersen M, Martins S, Isaacson M, et al. Cerebral astrocyte response to micromachined silicon implants. Exp Neurol 1999; 156: 33-49. DOI:10.1006/exnr.1998.6983

Kabanov AV, Gendelman HE. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci 2007; 32: 1054-1082. PMID:20234846

Tran PA, Zhang L, Webster TJ. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 2009; 61: 1097-1114. DOI:10.1016/j. addr.2009.07.01033. Malarkey EB, Fisher KA, Bekyarova E, Liu W, Haddon RC, Parpura V. Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett 2009; 9: 264−268. DOI:10.1021/nl802855c

Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 2009; 4: 126−133. DOI:10.1038/ nnano.2008.374

Gabay T, Jakobs E, Ben-Jacob E, Hanein Y. Engineered self-organization of neural networks using carbon na-notube clusters. Phys A: Stat Mechan Appl 2005; 350: 611-621. DOI: 10.1016/j.physa.2004.11.007

Matsumoto K, Shimizu N. Activation of the phospholipase C signaling pathway in nerve growth factor-treated neurons by carbon nanotubes. Biomaterials 2013; 34: 5988-5994. DOI:10.1016/j.biomaterials.2013.04.038

Masters CL, Cappai R, Barnham KJ, Villemagne VL. Molecular mechanisms for Alzheimer`s disease: implications for neuroimaging and therapeutics. J Neurochem 2006; 97: 1700-1725. DOI:10.1111/j.1471-4159.2006.03989.x

Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 2010; 6: 427-441. DOI:10.1016/j.nano.2009.11.007

Wong SS, Harper JD, Lansbury PT, Lieber CM. Carbon nanotube tips: high-resolution probes for imaging biological systems. J Am Chem Soc 1998; 120: 603-604. DOI: 10.1021/ja9737735

Oh J, Yooc G, Chang YW, Kim HJ, Jose J, Kim E, et al. A carbon nanotube metal semiconductor field effect transistor-based biosensor for detection of amyloid-beta in human serum. Biosensors Bioelectronics 2013; 50: 345-350. DOI:10.1016/j.bios.2013.07.004

Schrag A, Quinn NP, Ben-Shlomo Y. Heterogeneity of Parkinson`s disease. J Neurol Neurosurg Psychiatry 2006; 77: 275-276. PMID:16421140

Fraix V, Houeto JL, Lagrange C, Le Pen C, Krystkowiak P, Guehl D, et al. Clinical and economic results of bilateral subthalamic nucleus stimulation in Parkinson`s disease. J Neurol Neurosurg Psychiatry 2006; 77: 443-449. DOI:10.1136/jnnp.2005.077677

Lanotte M, Rizzone M, Bergamasco B, Faccani G, Melcarne A, Lopiano L. Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry 2002; 72: 53-58.


Jiang C, Li L, Hao H. Carbon nanotube yarns for deep brain stimulation electrode. IEEE Trans Neural Syst Rehabil Eng 2011; 19: 612-616. PMID:21859605

Comston A, Coles A. Multiple sclerosis. Lancet 2002; 359: 1221-1231. DOI:10.1016/S0140-6736(08)61620-7

Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotech 2009; 4: 126-133. DOI:10.1038/nnano.2008.374

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment in the kindling model of epilepsy. Life Sci 2016 doi: 10.1016/j.lfs.2016.08.011 [Epub ahead of print].

Fisher RS, Ho J. Potential new methods for antiepileptic drug delivery. CNS Drugs 2002; 16: 579-593. PMID:12153331

Schwab ME. Repairing the injured spinal cord. Science 2002; 295: 1029-1031. PMID:11834824

Sahni V, Kessler JA. Stem cell therapies for spinal cord injury. Nat Rev Neurol 2010; 6: 363-372. DOI:10.1038/ nrneurol.2010.73

Roman JA, Niedzielko TL, Haddon RC, Parpura V, Floyd CL. Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury. J Neurotrauma 2011; 28: 2349-2362. DOI: 10.1089/neu.2010.1409

Kim SU. Genetically engineered human neural stem cells for brain repair in neurological diseases. Brain Dev 2007; 29: 193-201. DOI:10.1016/j.braindev.2006.07.012

Huang YJ, Wu HC, Tai NH, Wang TW. Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small 2012; 8: 2869-2877. DOI:10.1002/smll.201200715

Lee HJ, Park J, Yoon OJ, Kim HW, Lee DY, Kim DH, et al. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat Nanotech 2011; 6: 121-125. DOI:10.1038/nnano.2010.281

Moon SU, Kim J, Bokara KK, Kim JY, Khang D, Webster TJ, et al. Carbon nanotubes impregnated with subventricu-lar zone neural progenitor cells promotes recovery from stroke. Int J Nanomed 2012; 7: 2751-2765. DOI:10.2147/ IJN.S30273

Al-Jamala KT, Gherardinic L, Bardic G, Nunesa A, Guoa C, Bussya C, et al. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. PNAS 2011; 108: 10952-10957. DOI:10.1073/ pnas.1100930108

Lindsay RM. Neurotrophic growth factors and neurodegenerative diseases: therapeutic potential of the neuro-trophins and ciliary neurotrophic factor. Neurobiol Aging 1994; 15: 249-251. PMID:7838303

Son SJ, Bai X, Nan AJ, Ghandehari H, Lee SB. Template synthesis of multifunctional nanotubes for controlled release. J Control Release 2006; 114: 43-152. DOI:10.1016/j.jconrel.2006.06.004

Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 2009; 3: 307-316. DOI:10.1021/ nn800551s

Bokara KK, Kim JY, Lee Y, Yun K, Webster TJ, Jong Eun Lee JE, et al. Biocompatability of carbon nanotubes with stem cells to treat CNS injuries. Anat Cell Biol 2013; 46: 85-92. DOI:10.5115/acb.2013.46.2.85

Matsumoto K, Sato C, Naka Y, Kitazawa A, Whitby RL, Shimizu N. Neurite outgrowths of neurons with neurotrophin-coated carbon nanotubes. J Biosci Bioeng 2007; 103: 216-220. DOI:10.1263/jbb.103.216

Browne SE, Lin L, Mattsson A, Georgievska B, Isacson O. Selective antibody-induced cholinergic cell and syn-apse loss produce sustained hippocampal and cortical hypometabolism with correlated cognitive deficits. Exp Neurol 2001; 170: 36-47. DOI:10.1006/exnr.2001.7700

Huang F, Wang J, Chen A. Effects of co-grafts mesenchymal stem cells and nerve growth factor suspension in the repair of spinal cord injury. J Huazhong Univ Sci Technolog Med Sci 2006; 26: 206-210. PMID:16850748

Lad SP, Neet KE, Mufson EJ. Nerve growth factor: structure, function and therapeutic implications for Alzheimer`s disease. Curr Drug Targets CNS Neurol Disord 2003; 2: 315-334. PMID:14529363

Chen W, Xiong Q, Ren Q, Guo Y, Li G. Can amino-functionalized carbon nanotubes carry functional nerve growth factor? Neural Regen Res 2014; 9: 285-292. DOI:10.4103/1673-5374.128225

Cho Y, Borgens RB. Electrically controlled release of the nerve growth factor from a collagen-carbon nanotube composite for supporting neuronal growth. J Mater Chem B 2013; 1: 4166-4170. DOI: 10.1039/C3TB20505C

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Nerve growth factor-carbon nanotube complex exerts prolonged protective effects in an in vitro model of ischemic stroke. Life Sci 2016; DOI: 10.1016/j.lfs.2016.11.029

Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 1990; 186: 421-431. PMID:2233309

Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol 2004; 207: 3221-3231. DOI:10.1242/jeb.01022

Fantacci C, Capozzi D, Ferrara P, Chiaretti A. Neuroprotective role of nerve growth factor in hypoxic-ischemic brain injury. Brain Sci 2013; 3: 1013-1022. DOI:10.3390/ brainsci3031013

Hassanzadeh P, Arbabi E, Rostami F, Atyabi F, Dinarvand R. Carbon nanotubes prolong the regulatory action of nerve growth factor on the endocannabinoid signaling. Physiol Pharmacol 2015; 19: 167-176. URL:

Di Marzo V, Melck D, Bisogno T, De Petrocellis L. Endocannabinoids: endogenous cannabinoid receptor ligands with neuroremodulatory action. Trends Neurosci 1998; 21: 521-528. PII: S0166-2236(98)01283-1

Ferna´ndez-Ruiz JJ, Berrendero F, Herna´ndez ML, Ramos JA. The endogenous cannabinoid system and brain development. Trends Neurosci 2000; 23: 14-20. PMID:10631784

Wilson RI, Kunos G, Nicoll RA. Presynaptic specificity of endocannabinoid signalling in the hippocampus. Neuron 2001; 31: 453-462. PMID:11516401

Boger DL, Sato H, Lerner AE, Hedrick MP, Fecik RA, Miyauchi H, et al. Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide. Proc Natl Acad Sci USA 2000; 97: 5044-5049. PMID:10805767

Casanova ML, Blazquez C, Martinez-Palacio J, Villanueva C, Fernandez-Acenero MJ, Huffman JW, et al. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest 2003; 111: 43-50. DOI:10.1172/JCI16116

Centonze D, Rossi S, Finazzi-Agrò A, Bernardi G, Maccarrone M. The endocannabinoid system in multiple scle-rosis and amyotrophic lateral sclerosis. Int Rev Neurobiol 2007; 82: 171-186. DOI:10.1016/S0074-7742(07)82009-5

Lavie G, Teichner A, Shohami E, Ovadia H, Leker RR. Long term cerebroprotective effects of dexanabinol in a model of focal cerebral ischemia. Brain Res 2001; 901: 195-201. PMID:11368967

Van der Stelt M, Mazzola C, Esposito G, Matial I, Petrosino S, De Filippis D, et al. Endocannabinoids and β-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell Mol Life Sci 2006; 63: 1410-1424. DOI:10.1007/ s00018-006-6037-3

Arevalo-Martin A, Garcia-Ovejero D, Sierra-Palomares Y, Paniagua-Torija B, Gonzalez-Gil I, Ortega-Gutierrez S, et al. Early endogenous activation of CB1 and CB2 receptors after spinal cord injury is a protective response involved in spontaneous recovery. PLOS one 2012; 7: e49057. DOI:10.1371/journal.pone.0049057

Wallace MJ, Martin BR, De Lorenzo RJ. Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 2002; 452: 295-301. PMID:12359270

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Carbon nanotube-anandamide complex exhibits sustained protective effects in an in vitro model of stroke. Physiol Pharmacol 2016; 20: 12-23. URL: article-1-1155-en.html

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Application of carbon nanotubes as the carriers of the cannabinoid, 2-arachidonoylglycerol: Towards a novel treatment strategy in colitis. Life Sci 2016; DOI: 10.1016/j. lfs.2016.11.015



Article Tools
Email this article (Login required)
About The Authors

Parichehr Hassanzadeh
Tehran University of Medical Sciences, Tehran, Iran

Nanotechnology Research Center; Faculty of Pharmacy

Fatemeh Atyabi
Tehran University of Medical Sciences, Tehran, Iran

Nanotechnology Research Center; Faculty of Pharmacy

Rassoul Dinarvand
Tehran University of Medical Sciences, Tehran, Iran

Nanotechnology Research Center; Faculty of Pharmacy

Font Size