Scientific Online Resource System

Biomedical Reviews

Creation of Nanorobots: Both State-of-the-Science and State-of-the-Art

Parichehr Hassanzadeh, Fatemeh Atyabi, Rassoul Dinarvand


Over the last decade, remarkable achievements in nanofabrication technology has led to the development of hybrid intelligent systems including the nanomechanical devices powered by the chemical energy sources or biomolecular motors. In this context, nanorobotics has emerged as a highly-advanced technology for designing the fully functional smart devices or robots at nano scale. Development of these highly-controlled and functional nanostructures for sensing, information processing, signaling, and actuation may provide remarkable breakthroughs in medicine such as the improved imaging or targeted therapeutic interventions. Besides the detection and destroying the toxic materials and ecosystem restoration, the stimuli-responsive nanorobots may be used for the diagnosis or treatment of cardiac disorders, traumatic injuries, diabetes, and bacterial or viral infections. These molecular tools with nanoscale resolution facilitates early diagnosis in cancer and precise localization of anticancer agents leading to the minimal side effects. Nanorobots may easily traverse the human body and repair the cells or assist an improper functioning organ. These tiny devices integrated with wireless locomotion, external or internal power supply, artificial intelligence, and smart sensors may also be used for targeted delivery of genes or drugs into the single cells or tissues, tele-operation, or patient monitoring. Indeed, development of the medical nanorobots with a wide range of capabilities is a proof of concept and art in modern science and a breakthrough in nanotechnology which has been highlighted in the present manuscript.

Full Text


Cavalcanti A, Shirinzadeh B, Freitas Jr. RA, Kretly LC. Medical nanorobot architecture based on nanobioelectronics. Recent Pat Nanotechnol 2007; 1: 1-10. PMID:19076015.

Cavalcanti A, Shirinzadeh B, Zhang M, Kretly LC. Nanorobot hardware architecture for medical defense. Sensors 2008; 8: 2932-2958. DOI:10.3390/s8052932.

Hassanzadeh P. New perspectives in biosensor technology. Gastroenterol Hepatol Bed Bench 2010; 3: 105-107.

Murphy D, Challacombe B, Nedas T, Elhage O, Althoefer K, Seneviratne L, et al. Equipment and technology in robotics. Arch Esp Urol 2007; 60: 349-354.

Patel GM, Patel GC, Patel RB, Patel JK, Patel M. Nanorobot: A versatile tool in nanomedicine. J Drug Target 2006; 14: 63-67. DOI:10.1080/10611860600612862.

Ohki T, Ouriel K, Silveira PG, Katzen B, White R, Criado F, et al. Initial results of wireless pressure sensing for endovascular aneurysm repair: the APEX trial-acute pressure measurement to confirm aneurysm sac exclusion. J Vasc Surg 2007; 45: 236-242. DOI:10.1016/j.jvs.2006.09.060.

Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous molecular computer for logical control of gene expression. Nature 2004; 429: 423-429. DOI: 10.1038/ nature02551.

Dubey A, Sharma G, Mavroidis C, Tomassone MS, Nikitczuk K, Yarmushc ML. Computational studies of viral protein nano-actuators. J Comp Theor Nanosci 2004; 1: 18-28.

Hassanzadeh P. Computational modelling: moonlighting on the neuroscience and medicine. Biome Rev 2013; 24: 25-31.

Ignatyev MB. Necessary and sufficient conditions of nanorobot synthesis. Doklady Mathematics 2010; 82: 671-675. DOI:10.1134/S1064562410040435.

Hill C, Amodeo A, Joseph JV, Patel HR. Nano- and microrobotics: How far is the reality? Expert Rev Anticancer Ther 2008; 8: 1891-1897.DOI: 10.1586/14737140.8.12.1891.

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Carbon nanotube-anandamide complex exhibits sustained protective effects in an in vitro model of stroke. Physiol Pharmacol 2016; 20: 12-23.

Hassanzadeh P, Arbabi E, Rostami F, Atyabi F, Dinarvand R. Carbon nanotubes prolong the regulatory action of nerve growth factor on the endocannabinoid signaling. Physiol Pharmacol 2015; 19: 167-176.

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Application of carbon nanotubes as the carriers of the cannabinoid, 2-arachidonoylglycerol: Towards a novel treatment strategy in colitis. Life Sci 2016; DOI:10.1016/j.lfs.2016.11.015

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Nerve growth factor-carbon nanotube complex exerts prolonged protective effects in an in vitro model of ischemic stroke. Life Sci 2016; DOI: 10.1016/j.lfs.2016.11.029.

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Application of carbon nanotubes for controlled release of growth factors or endocannabinoids: A breakthrough in biomedicine. Biomed Rev 2016; 27: 19-27.

T Kubik, K Bogunia, M Sugisaka. Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 2005;6:17-33. PMID:15727553

Mallik R, Gross SP. Molecular motors: strategies to get along. Curr Biol 2004; 14: R971-R982. DOI 10.1016/j. cub.2004.10.046.

Martel S, Mohammadi M, Felfoul O, Zhao Lu, Pouponneau P. Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 2009; 28: 571-582. DOI: 10.1177/0278364908100924.

Behkam B, Sitti M. Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl Phys Lett 2007; 90: 1-3.

Ozin GA, Manners I, Fournier-Bidoz S, Arsenault A. Dream nanomachines. Adv Mater 2005; 17: 3011-3018. DOI: 10.1002/adma.200501767.

Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J, Zettl A. Rotational actuators based on carbon nanotubes. Nature 2003; 424: 408-410. DOI:10.1038/ nature01823

Fan DL, Zhu FQ, Cammarata RC, Chien CL. Efficiency of assembling of nanowires in suspension by ac electric fields. Appl Phys Lett 2006; 89: 10.1063/1.2397384. DOI: 10.1063/1.2397384

Fan DL, Zhu FQ, Cammarata RC, Chien CL. Controllable high-speed rotation of nanowires. Phys Rev Lett 2005; 94: 247208. DOI: 10.1103/PhysRevLett.94.247208.

Regan BC, Aloni S, Jensen K, Ritchie RO, Zettl A. Nanocrystal-powered nanomotor. Nano Lett 2005; 5: 1730-1733. DOI: 10.1021/nl0510659.

Cavalcanti A, Freitas Jr. RA. Autonomous multi-robot sensor-based cooperation for nanomedicine. Int J Nonlinear Sci Numer Simul 2002; 3: 743-746.

Martel S, Felfoul O, Mohammadi M, Mathieu JB. Interventional procedure based on nanorobots propelled and steered by flagellated magnetotactic bacteria for direct targeting of tumors in the human body. Conf Proc IEEE Eng Med Biol Soc 2008; 2008: 2497-500. DOI: 10.1109/ IEMBS.2008.4649707.

Curtis ASG, Dalby M, Gadegaard N. Cell signaling arising from nanotopography: implications for nanomedical devices. Nanomedicine 2006; 1: 67-72. doi:10.2217/17435889.1.1.67

Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006; 23: 1417-1450. DOI:10.1007/s11095-006-0284-8

Celikten A; Cetin A. Recent advances, issues and patents on medical nanorobots. Rec Pat Eng 2016; 10: 28-35.

Balasubramanian S, Kagan D, Jack HCM, Campuzano S, Lobo-Castañon MJ, Lim N, et al. Micromachineenabled capture and isolation of cancer cells in complex media. Angew Chem Int Ed Engl 2011; 50: 4161-4164. DOI:10.1002/anie.201100115.

Patel RR. Nanorobotics ideas in nanomedicine. Asian J Pharm Sci Res 2013; 3: 15-22. ISSN 2249-4898.

Saadeh Y, Vyas D. Nanorobotic applications in medicine: Current proposals and designs. Am J Robot Surg 2014; 1: 4-11. PMID: 26361635

Kubik T, Bogunia-Kubik K, Sugisaka M. Nanotechnology on duty in medical applications. Curr Pharmaceut Biotechnol 2005; 6: 17-33. DOI: 10.2174/1389201053167248.

Sujatha V, Suresh M, Mahalaxmi S. Nanorobotics-A futuristic approach. SRM Univ J Dent Sci 2010; 1:86-80.

Mitthra S, Karthick A, Anuradha B, Mensudar R, Sadhana KR, Varshini GN. Nanorobots - A small wonder. Biosci Biotech Res 2016; 13: 2131-2134.

Freitas RA. The future of nanofabrication and molecular scale devices in nanomedicine. Stud Health Technol Inform 2002; 80: 45-59. PMID:12026137.

Vartholomeos P, Fruchard M, Ferreira A, Mavroidis C. MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annu Rev Biomed Eng 2011; 13: 157-184. DOI: 10.1146/annurev-bioeng-071910-124724.

Abbott JJ, Ergeneman O, Kummer MP, Hirt AM, Nelson BJ. Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. IEEE Trans Rob 2007; 23: 1247-1252. DOI: 10.1109/ AIM.2007.4412546.

Martel S, Mathieu JB, Felfoul O, Chanu A, Aboussouan E, Tamaz S, et al. A computer-assisted protocol for endovascular target interventions using a clinical MRI system for controlling untethered microdevices and future nanorobots. Comput Aided Surg 2008; 13: 340-352. DOI:10.3109/10929080802551274.

Mathieu JB, Martel S. Magnetic microparticle steering within the constraints of an MRI system: proof of concept of a novel targeting approach. Biomed Microdev 2007; 9: 801-808. DOI: 10.1007/s10544-007-9092-0

Behkam B, Sitti M. Design methodology for biomimetic propulsion of miniature swimming robots. ASME J Dyn Sys Measur Control 2006; 128: 36-43. DOI: 10.1115/1.2171439

Carpi F, Pappone C. Magnetic manouvering of endoscopic capsules by means of a robotic navigation system. IEEE Trans Biomed Eng 2008; 62: 546-549. DOI: 10.1109/ TBME.2009.2013336.

Jurgons R, Seliger C, Trahms AHL, Odenbach S, Alexiou C. Drug loaded magnetic nanoparticles for cancer therapy. J Phys Condens Matter 2006; 18: 2893-2902.

Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MRI imaging and drug delivery. Adv Drug Deliv Rev 2008; 60: 1252-1265. DOI: 10.1016/j.addr.2008.03.018.

Cerofolini G, Amato P, Asserini M, Mauri G. A surveillance system for early-stage diagnosis of endogenous diseases by swarms of nanobots. Adv Sci Lett 2010; 3: 345-352. DOI: 10.1166/asl.2010.1138

Hassanzadeh P, Fullwood I, Sothi S, Aldulaimi D. Cancer nanotechnology. Gastroenterol Hepatol Bed Bench 2011; 4: 63-69. PMCID: PMC4017405.

Chen XZ, Hoop M, Shamsudhin N, Huang T, Özkale B, Li Q, et al. Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv Mat 2017; 1605458.DOI: 10.1002/ adma.201605458.

Kim S, Qiu F, Kim S, Ghanbari A, Moon C, Zhang L, et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater 2013; 1-6. DOI: 10.1002/ adma.201301484

Lee YS, Bae JY, Koo HY, Lee YB, Choi WS. A remotecontrolled generation of gold@polydopamine (core@shell) nanoparticles via physical-chemical stimuli of polydopamine/gold composites. Sci Rep 2016; 6: 22650. DOI: 10.1038/srep22650

Qian W, Yu DG, Li Y, Liao YZ, Xia Wang X, Wa L. Dual drug release electrospun core-shell banofibers with tunable dose in the second phase. Int J Mol Sci 2014; 15: 774-786. doi: 10.3390/ijms15010774

Somanna MB. Nanobots: The future of medical treatments. Int J Sci Tech Res 2015; 4: 276-278. ISSN 2277- 8616

Torelli E, Marini M, Palmano S, Piantanida L, Polano C, Scarpellini A, et al. A DNA origami nanorobot controlled by nucleic acid hybridization. Small 2014; 10: 2918-2926. DOI: 10.1002/smll.201400245

Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature 2006; 440: 297-302. DOI: 10.1038/ nature04586.

Douglas SM, Bachelet I, Church GM. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012; 335: 831-834. DOI: 10.1126/science. 1214081.

Yanev S, Aloe L, Fiore M, Chaldakov GN. Neurotrophic and metabotrophic potential of nerve growth factor and brain-derived neurotrophic factor: Linking cardiometabolic and neuropsychiatric diseases. World J Pharmacol 2013; 2: 92-99. DOI: 10.5497/wjp.v2.i4.92

Hassanzadeh P, Hassanzadeh A. Involvement of the neurotrophin and cannabinoid systems in the mechanisms of action of neurokinin receptor antagonists. Eur Neuropsychopharmacol 2011; 21: 905-917. DOI:10.1016/j. euroneuro.2011.01.002.

Hassanzadeh P, Rahimpour S. The cannabinergic system is implicated in the upregulation of central NGF protein by psychotropic drugs. Psychopharmacology 2011; 215: 129-141. DOI:10.1007/s00213-010-2120-4.

Hassanzadeh P, Hassanzadeh A. Effects of different psychotropic agents on the central nerve growth factor protein. Iran J Basic Med Sci 2010; 13: 202-209.

Hassanzadeh P, Hassanzadeh A. Implication of NGF and endocannabinoid signalling in the mechanism of action of sesamol: a multi-target natural compound with therapeutic potential. Psychopharmacology 2013; 229: 571-578. DOI:10.1007/s00213-013-3111-z.

Hassanzadeh P, Hassanzadeh A. The CB1 receptor-mediated endocannabinoid signaling and NGF: The novel targets of curcumin. Neurochem Res 2012; 37: 1112-1120. DOI:10.1007/s11064-012-0716-2.

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. The endocannabinoid system and NGF are involved in the mechanism of action of resveratrol: a multi-target nutraceutical with therapeutic potential in neuropsychiatric disorders. Psychopharmacology 2016; 233: 1087-1096. DOI:10.1007/s00213-015-4188-3.

Jarho P, Urtti A, Pate DW, Suhonen P, Jarvinen T. Increase in aqueous solubility, stability and in vitro corneal permeability of anandamide by hydroxypropyl-ß-cyclodextrin. Int J Pharm 1996; 137: 209-216. SICI:0378-5173.64.

Lindsay RM. Neurotrophic growth factors and neurodegenerative diseases: therapeutic potential of the neurotrophins and ciliary neurotrophic factor. Neurobiol Aging 1994; 15: 249-251. PMID:7838303.

Sharma NN, Mittal RK. Nanorobot movement: Challenges and biologically inspired solutions. Int J Smart Sens Intel Sys 2008; 1: 87-109.



Article Tools
Email this article (Login required)
About The Authors

Parichehr Hassanzadeh
Tehran University of Medical Sciences, Tehran, Iran
Iran, Islamic Republic of

Nanotechnology Research Center, Faculty of Pharmacy

Fatemeh Atyabi
Tehran University of Medical Sciences, Tehran, Iran
Iran, Islamic Republic of

Nanotechnology Research Center, Faculty of Pharmacy

Rassoul Dinarvand
Tehran University of Medical Sciences, Tehran, Iran
Iran, Islamic Republic of

Nanotechnology Research Center, Faculty of Pharmacy

Font Size