Scientific Online Resource System

Biomedical Reviews

From Antitubulins to Trackins

Stanislav Yanev, Marco Fiore, Alexander Hinev, Peter Ghenev, Mariyana Hristova, Plamen Panayotov, Anton Tonchev, Nikolay Evtimov, Luigi Aloe, George N Chaldakov


Microtubules (MT) are dynamically instable, assembling and disassembling structures of the cell. Tubulin, the major building protein of MT, is a heterodimer consisting of α and ẞ subunits. Agents that bind to tubulin and inhibit its assembly lead to the inhibition of MT formation. Such tubulin-binding agents are usually termed MT-disassembling agents or antitubulins. Endocytosis, matrix protein secretion, cell division, cell migration and inflammation are examples of MT-dependent processes. Their dysfunction, in particular in arterial smooth muscle cells (ASMC), is critically involved in atherogenesis. Here we Dance round (i) MT-based secretory pathway in ASMC and, in turn, antitubulins for atherosclerosis therapy, and (ii) the neurotrophins, particularly nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and their receptors Trk (tyrosine receptor kinase; pronounced `track`), introducing the term trackins - Trk-targeting agents (TTA) that influence positively (agonistically) or negatively (antagonistically) the activity of TrkA receptor for NGF and/or TrkB receptor for BDNF. We propose that some trackins and their native ligands may have therapeutic potentials for cardiometabolic, neuropsychiatric, oncologic and other diseases. Finally the interaction of MT-tubulin and neurotrophin Trk receptors is outlined.

Full Text


Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature 2010; 463: 485-492. [DOI: 10.1038/ nature08908]

Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 1998; 279: 519. [DOI: 10.1126/science.279.5350.519]

Hancock WO. Bidirectional cargo transport: moving beyond tug of war. Nat Rev Mol Cell Biol 2014; 15: 615- 628. [DOI: 10.1038/nrm3853]

Cui J, Pang J, Lin YJ, Jiang P, Gong H, Wang Z, et al. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes. Biochem Biophys. Res Commun 2016; 476: 620-626. [DOI: 10.1016/j. bbrc.2016.06.008]

Fu MM, Holzbaur EL. Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol 2014; 24: 564-574. [DOI: 10.1016/j. tcb.2014.05.002]

Ross R. Atherosclerosis - an inflammatory disease. N Engl J Med 1999; 340: 115-126. [DOI: 10.1056/ NEJM199901143400207]

Chaldakov GN, Fiore M, Ghenev PI, Stankulov IS, Aloe L. Atherosclerotic lesions: possible interactive involvement of intima, adventitia and associated adipose tissue. Int Med J 2000; 7: 43-49.

Chaldakov GN. Human body as a multicrine system, with special reference to cell protein secretion: From vascular smooth muscles to adipose tissue. Biomed Rev 2016; 27: VIII-XIX.

Chaldakov GN, Nikolov SD. Ultrastructure of the arterial smooth muscle cell. In: Wolf S and Werthessen NT, editors. The Smooth Muscle of the Artery. Springer US, Boston, MA, 1975; 14-20

Chaldakov GN, Vankov VN. Morphological aspects of secretion in the arterial smooth muscle cell, with special reference to the Golgi complex and microtubular cytoskeleton. Atherosclerosis 1986; 61: 175-192. [DOI: 10.1016/0021-9150(86)90137-1]

Chaldakov GN and Vankov VN, Antifibrotic approach in the therapy of arterial occlusive diseases: new considerations. In: Trubestein G, editor. Conservative Therapy of Arterial Occlusive Disease. 1986; Georg Thieme Verlag. pp. 224-226.

Zhu X, Efimova N, Arnette C, Hanks SK, Kaverina I. Podosome dynamics and location in vascular smooth muscle cells require CLASP-dependent microtubule bending. Cytoskeleton (Hoboken.) 2016; 73: 300-315. [DOI: 10.1002/cm.21302]

Chaldakov GN. Antitubulins - a new therapeutic approach for atherosclerosis? Atherosclerosis 1982; 44: 385-390. [DOI: 10.1016/0021-9150(82)90013-2]

Chaldakov GN. Anti-inflammatory drugs and ischemic heart disease: new considerations (a cell biologist`s proposal to cardiologists). J Am Coll Cardiol 1991; 17: 1445-1446. [DOI: 10.1016/S0735-1097(10)80161-5]

Chaldakov GN. Proposal for clinical trials using anti-inflammatory drugs in the therapy of angina pectoris, myocardial infarction and coronary restenosis after angioplasty and bypass grafting. Med Hypotheses 1992; 37: 74-75. [DOI: 10.1016/0306-9877(92)90043-C]

Lu Y, Chen J, Xiao M, Li W, Miller DD. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 2012; 29: 2943-2971. [DOI: 10.1007/ s11095-012-0828-z]

Nidorf M, Thompson PL. Effect of colchicine (0.5 mg twice daily) on high-sensitivity C-reactive protein independent of aspirin and atorvastatin in patients with stable coronary artery disease. Am J Cardiol 2007; 99: 805-807. [DOI: 10.1016/j.amjcard.2006.10.039]

Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-Dose Colchicine for Secondary Prevention of Cardiovascular Disease. J Am Coll Cardiol 2013; 61: 404. [DOI: 10.1016/j.jacc.2012.10.027]

Huang C, Cen C, Wang C, Zhan H, Ding X. Synergistic effects of colchicine combined with atorvastatin in rats with hyperlipidemia. Lipids Health Dis 2014; 13: 67. [DOI: 10.1186/1476-511X-13-67]

Leung YY, Yao Hui LL, Kraus VB. Colchicine--Update on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum 2015; 45: 341-350. [DOI: 10.1016/j. semarthrit.2015.06.013]

Robertson S, Martinez GJ, Payet CA, Barraclough JY, Celermajer DS, Bursill C, et al. Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin Sci (Lond) 2016; 130: 1237-1246. [DOI: 10.1042/ CS20160090]

Martinez GJ, Robertson S, Barraclough J, Xia Q, Mallat Z, Bursill C, et al. Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome. J Am Heart Assoc 2015; 4: e002128. [DOI: 10.1161/JAHA.115.002128]

Khan R, Spagnoli V, Tardif JC, L`Allier PL. Novel anti-inflammatory therapies for the treatment of atherosclerosis. Atherosclerosis 2015; 240: 497-509. [DOI: 10.1016/j. atherosclerosis.2015.04.783]

Tousoulis D, Oikonomou E, Economou EK, Crea F, Kaski JC. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J 2016; 37: 1723-1732. [DOI: 10.1093/eurheartj/ehv759]

Bauriedel G, Heimerl J, Beinert T, Welsch U, Hofling B. Colchicine antagonizes the activity of human smooth muscle cells cultivated from arteriosclerotic lesions after atherectomy. Coron Artery Dis 1994; 5: 531-539.

Wojcicki J, Hinek A, Jaworska M, Samochowiec L. The effect of colchicine on the development of experimental atherosclerosis in rabbits. Pol.J Pharmacol Pharm 1986; 38: 343-348.

Wegrowski J, Moczar M, Lagrue G, Rhabar K, Robert AM, Robert L. Effect of colchicine on atherosclerosis. II. Biochemical studies on skin biopsies from patients treated perorally with colchicine. Clin Physiol Biochem 1985; 3: 226-233.

Lagrue G, Wegrowski J, Rhabar K, Meyer-Heine A, Balanger S, Robert AM, et al. Effect of colchicine on atherosclerosis. I. Clinical and biological studies. Clin Physiol Biochem 1985; 3: 221-225.

Tsutsui H, Ishihara K, Cooper G. Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science 1993; 260: 682. [DOI: 10.1126/science.8097594]

Cheng G, Kasiganesan H, Baicu CF, Wallenborn JG, Kuppuswamy D, Cooper G. Cytoskeletal role in protection of the failing heart by beta-adrenergic blockade. Am J Physiol Heart Circ Physiol 2012; 302: H675-H687. [DOI: 10.1152/ajpheart.00867.2011]

Kawabe Ji, Okumura S, Nathanson MA, Hasebe N, Ishikawa Y. Caveolin regulates microtubule polymerization in the vascular smooth muscle cells. Bioch Biophys Res Commun 2006; 342: 164-169.

Chaldakov GN, Fiore M, Ghenev PI, Stankulov IS, Angellucci F, Pavlov PS, et al. Conceptual novelties in ath-erogenesis: Smooth muscle cells, adventitia, and adipose tissue. Biomed Rev 2000; 11, 63-67.

Chaldakov GN, Fiore M, Stankulov IS, Manni L, Hristova MG, Antonelli A, et al. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog. Brain Res 2004; 146: 279-289. [DOI: 10.1016/S0079- 6123(03)46018-4]

Chaldakov GN, Fiore M, Tonchev AB, Aloe L. Adipopharmacology, a novel drug discovery approach: a metabotrophic perspective. Lett Drug Design Discov 2006; 3: 503-505.

Lambiase A, Rama P, Bonini S, Caprioglio G, Aloe L. Topical treatment with nerve growth factor for corneal neurotrophic ulcers. N Engl J Med 1998; 338: 1174-1180. [DOI: 10.1056/NEJM199804233381702]

Aloe L, Tirassa P, Lambiase A. The topical application of nerve growth factor as a pharmacological tool for human corneal and skin ulcers. Pharmacol Res 2008; 57: 253-258. [DOI: 10.1016/j.phrs.2008.01.010]

Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987; 237: 1154-1162. [DOI: 10.1126/sci-ence.3306916]

Aloe L, Chaldakov GN. The multiple life of nerve growth factor: tribute to rita levi-montalcini (1909-2012). Balkan Med J 2013; 30: 4-7. [DOI: 10.5152/balkanmedj.2013.003]

Jeanneteau F, Chao MV. Promoting neurotrophic effects by GPCR ligands. Novartis Found Symp 2006; 276: 181- 189. [DOI: 10.1002/9780470032244.ch14]

Chaldakov GN, Stankulov IS, Fiore M, Ghenev PI, Aloe L. Nerve growth factor levels and mast cell distribution in human coronary atherosclerosis. Atherosclerosis 2001; 159: 57-66. [DOI: 10.1016/S0021-9150(01)00488-9]

Geroldi D, Minoretti P, Emanuele E. Brain-derived neurotrophic factor and the metabolic syndrome: more than just a hypothesis. Med Hypotheses 2006; 67: 195-196. [DOI: 10.1016/j.mehy.2006.02.001]

Manni L, Nikolova V, Vyagova D, Chaldakov GN, Aloe L. Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. Int J Cardiol 2005; 102: 169-171. [DOI: 10.1016/j.ijcard.2004.10.041]

Yanev SG, Aloe L., Fiore M., Chaldakov G. N. Neurotrophic and metabotrophic potential of nerve growth factor and brain-derived neurotrophic factor: Linking cardiometabolic and neuropsychiatric diseases. World J Pharmacol 2013; 2: 92-99. DOI: 10.5497/wjp.v2.i4.92

Schulte-Herbruggen O, Braun A, Rochlitzer S, Jockers- Scherubl MC, Hellweg R. Neurotrophic factors - a tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr Med Chem 2007; 14: 2318-2329. [DOI: 10.2174/092986707781745578]

Bariohay B, Lebrun B, Moyse E, Jean A. Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology 2005; 146: 5612-5620. [DOI: 10.1210/en.2005-0419]

Abe T, Morgan DA, Gutterman DD. Protective role of nerve growth factor against postischemic dysfunction of sympathetic coronary innervation. Circulation 1997; 95: 213-220. [DOI: 10.1161/01.CIR.95.1.213]

Hirose M, Kuroda Y, Murata E. NGF/TrkA Signaling as a Therapeutic Target for Pain. Pain Pract. 2016; 16: 175- 182. [DOI: 10.1111/papr.12342]

Weeraratna AT, Arnold JT, George DJ, DeMarzo A, Isaacs JT. Rational basis for Trk inhibition therapy for prostate cancer. Prostate 2000; 45: 140-148. [DOI: 10.1002/1097-0045(20001001)45:2%3C140::AID-PROS8%3E3.0.CO;2-%23]

Festuccia C, Muzi P, Gravina GL, Millimaggi D, Speca S, Dolo V, et al. Tyrosine kinase inhibitor CEP-701 blocks the NTRK1/NGF receptor and limits the invasive capability of prostate cancer cells in vitro. Int J Oncol. 2007; 30: 193-200. [DOI: 10.3892/ijo.30.1.193]

Anagnostopoulou V, Pediaditakis I, Alkahtani S, Alarifi SA, Schmidt EM, Lang F, et al. Differential effects of dehydroepiandrosterone and testosterone in prostate and colon cancer cell apoptosis: the role of nerve growth factor (NGF) receptors. Endocrinology 2013; 154: 2446-2456. [DOI: 10.1210/en.2012-2249]

Warrington RJ, Lewis KE. Natural antibodies against nerve growth factor inhibit in vitro prostate cancer cell metastasis. Cancer Immunol.Immunother. 2011; 60: 187- 195. [DOI: 10.1007/s00262-010-0934-x]

Seth JH, Sahai A, Khan MS, van der Aa F, de RD, Panicker JN, et al. Nerve growth factor (NGF): a potential urinary biomarker for overactive bladder syndrome (OAB)? BJU.Int 2013; 111: 372-380. [DOI: 10.1111/j.1464- 410X.2012.11672.x]

Chakravarthy R, Mnich K, Gorman AM. Nerve growth factor (NGF)-mediated regulation of p75(NTR) expression contributes to chemotherapeutic resistance in triple negative breast cancer cells. Biochem Biophys. Res Commun. 2016; 478: 1541-1547. [DOI: 10.1016/j. bbrc.2016.08.149]

Chiarenza A, Lazarovici P, Lempereur L, Cantarella G, Bianchi A, Bernardini R. Tamoxifen inhibits nerve growth factor-induced proliferation of the human breast cancerous cell line MCF-7. Cancer Res 2001; 61: 3002-3008.

Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve growth factor: role in growth, differentiation and controlling cancer cell development. J Exp.Clin Cancer Res 2016; 35: 116. [DOI: 10.1186/s13046-016-0395-y]

Thiele CJ, Li Z, McKee AE. On Trk--the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res 2009; 15: 5962-5967. [DOI: 10.1158/1078-0432.CCR-08-0651]

De la Cruz-Morcillo MA, Berger J, Sanchez-Prieto R, Saada S, Naves T, Guillaudeau A, et al. p75 neurotrophin receptor and pro-BDNF promote cell survival and migration in clear cell renal cell carcinoma. Oncotarget. 2016; 7: 34480-34497. [DOI: 10.18632/ oncotarget.8911]

Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, et al. Nerve sprouting and sudden cardiac death. Circ. Res 2000; 86: 816-821. [DOI: 10.1161/01.RES.86.7.816]

a. Bloom HL. Beyond beta-blockade: Nerve growth factor and arrhythmia. Heart Rhythm 2007; 4: S437-S448. [DOI: 10.1016/j.hrthm.2007.06.017]

Kozisek ME, Middlemas D, Bylund DB. Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther 2008; 117: 30-51. [DOI: 10.1016/j.pharmthera.2007.07.001]

Prior M, Dargusch R, Ehren JL, Chiruta C, Schubert D. The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer`s disease mice. Alzheimers Res Ther 2013; 5: 25. [DOI: 10.1186/alzrt179]

Povarnina PY, Vorontsova ON, Gudasheva TA, Ostrovskaya RU, Seredenin SB. Original nerve growth factor mimetic dipeptide GK-2 restores impaired cognitive functions in rat models of Alzheimer`s disease. Acta Naturae 2013; 5: 84-91.

Ostrovskaya RU, Gudasheva TA, Zaplina AP, Vahitova JV, Salimgareeva MH, Jamidanov RS, et al. Noopept stimulates the expression of NGF and BDNF in rat hippocampus. Bull Exp Biol Med 2008; 146: 334-337.

Lang UE, Borgwardt S. Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 2013; 31: 761-777. [DOI: 10.1159/000350094]

Zhen YF, Zhang J, Liu XY, Fang H, Tian LB, Zhou DH, et al. Low BDNF is associated with cognitive deficits in patients with type 2 diabetes. Psychopharmacology (Berl) 2013; 227: 93-100. [DOI: 10.1007/s00213-012- 2942-3]

Akinfiresoye L, Tizabi Y. Antidepressant effects of AMPA and ketamine combination: role of hippocampal BDNF, synapsin, and mTOR. Psychopharmacology (Berl) 2013; 230: 291-298. [DOI: 10.1007/s00213-013-3153-2 ]

Jiang C, Salton SR. The role of neurotrophins in major depressive disorder. Transl Neurosci 2013; 4: 46-58. [DOI: 10.2478/s13380-013-0103-8]

Salvinelli F, Frari V, Rocco ML, Rosso P, Aloe L. Enhanced presence of NGF and mast cells number in nasal cavity after autologous stimulation: relation with sensorineural hearing deficit. Eur.Rev Med Pharmacol Sci 2015; 19: 381-391.

Zhang Q, Descamps O, Hart MJ, Poksay KS, Spilman P, Kane DJ, et al. Paradoxical effect of TrkA inhibition in Alzheimer`s disease models. J Alzheimers Dis 2014; 40: 605-617. [DOI: 10.3233/JAD-130017]

Pryor S, McCaffrey G, Young LR, Grimes ML. NGF causes TrkA to specifically attract microtubules to lipid rafts. PLoS One 2012; 7: e35163. [DOI: 10.1371/journal. pone.0035163]

Farina AR, Di Ianni N, Cappabianca L, Ruggeri P, Ragone M, Ianni G, et al. TrkAIII promotes microtubule nucleation and assembly at the centrosome in SH-SY5Y neuroblastoma cells, contributing to an undifferentiated anaplastic phenotype. Biomed Res Int 2013; 2013: 740187. DOI: 10.1155/2013/740187

Sierra-Fonseca JA, Najera O, Martinez-Jurado J, Walker EM, Varela-Ramirez A, Khan AM, et al. Nerve growth factor induces neurite outgrowth of PC12 cells by promoting Gβγ-microtubule interaction. BMC Neurosci 2014; 15: 132. DOI: 10.1186/s12868-014-0132-4

Ketschek A, Jones S, Spillane M, Korobova F, Svitkina T, Gallo G. Nerve growth factor promotes reorganization of the axonal microtubule array at sites of axon collateral branching. Dev Neurobiol 2015; 75: 1441-1461. DOI: 10.1002/dneu.22294

Han YM, Kang GM, Byun K, Ko HW, Kim J, Shin MS, et al. Leptin-promoted cilia assembly is critical for normal energy balance. J Clin Invest 2014; 124: 2193-2197. DOI: 10.1172/JCI69395.

Chaldakov GN, Dikranian K. NGF-PC-AD connection. Adipobiology 2013; 5: 19-22.

Chakravarthy B, Gaudet C, Menard M, Atkinson T, Chiarini A, Dal Pra I, et al. The p75 neurotrophin receptor is localized to primary cilia in adult murine hippocampal dentate gyrus granule cells. Biochem Biophys Res Commun 2010; 401:458-462. DOI: 10.1016/j.bbrc.2010.09.081



Article Tools
Email this article (Login required)
About The Authors

Stanislav Yanev
Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria

Department of Drug Toxicology

Marco Fiore
National Research Council (CNR), Rome, Italy

Institute of Cell Biology and Neurobiology

Alexander Hinev
University St Marina Hospital, Varna, Bulgaria

Department of Urology

Peter Ghenev
Medical University, Varna, Bulgaria

Department of Pathology

Mariyana Hristova
Asparuhovo Polyclinic, Varna, Bulgaria

Endocrinology Unit

Plamen Panayotov
University St Marina Hospital, Varna, Bulgaria

Department of Cardiac Surgery

Anton Tonchev
Medical University, Varna, Bulgaria

Department of Anatomy and Histology

Nikolay Evtimov
Urology Clinic, St Anna Hospital, Varna, Bulgaria

Luigi Aloe
Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy

George N Chaldakov
Medical University, Varna, Bulgaria

Laboratory of Cell Biology, Department of Anatomy and Histology

Font Size