Scientific Online Resource System

Biomedical Reviews

Biomarkers of acute kidney injury and their role in clinical patient management

Ecem Busra Deger, Enver Arslan, Muslim Dogan Deger, Oktay Kaya

Abstract

Acute kidney injury (AKI) is a common public health problem and has a significant impact on cardiovascular disease, mortality and increased hospital costs. Also, AKI can progress to chronic kidney disease (CKD). Therefore, early diagnosis is very important for AKI. Serum creatinine (SCr) is a well-known biomarker in the diagnosis of AKI. However, changes in SCr levels are insufficient in early diagnosis so, new biomarkers are needed. Because of that, the search for biomarkers for the early detection of AKI is an ongoing process. In recent years, early diagnosis, prognostic and predictive biomarkers have been discovered to replace or support SCr in the diagnosis of AKI. New biomarkers can help early diagnosis and effective management of AKI. Since there are many biomarkers, when and under which condition these biomarkers should be used cause confusion. In this review, we aimed to construct and ease to use classification of these AKI biomarkers and summarize the current literature. We have divided the biomarkers into two main categories: renal and non-renal origin. Then, we have classified the biomarkers of renal origin as glomerular, tubular and unknown renal site. We have also described the clinical use of these biomarkers for diagnosis and prognosis.


Keywords

renal injury, clinical usage, early diagnosis, prognosis

Full Text


References

James MT, Bhatt M, Pannu N, Tonelli M. Long-term outcomes of acute kidney injury and strategies for improved care. Nat Rev Nephrol 2020; 16(4):193-205. DOI:10.1038/s41581-019-0247-z.

Ostermann M, Cerdá J. The burden of acute kidney injury and related financial issues. Contrib Nephrol 2018; 193:100-112. DOI:10.1159/000484967.

Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 2018; 14(10):607-625. DOI: 10.1038/s41581-018-0052-0.

Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care 2016; 20(1):299. DOI:10.1186/s13054-016-1478-z.

Roy JP, Devarajan P. Acute kidney injury: diagnosis and management. Indian J Pediatr 2020; 87(8):600-607. DOI:10.1007/s12098-019-03096-y.

Hayek SS, Leaf DE, Reiser J. Soluble urokinase receptor and acute kidney injury. Reply. N Engl J Med 2020; 382(22):2167-2168. DOI:10.1056/NEJMc2003613.

Eugen-Olsen J, Andersen O, Linneberg A, Ladelund S, Hansen TW, Langkilde A, et al. Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. J Intern Med 2010; 268(3):296-308. DOI:10.1111/j.1365-2796.2010.02252.x.

Backes Y, van der Sluijs KF, Mackie DP, Tacke F, Koch A, Tenhunen JJ, et al. Usefulness of suPAR as a biological marker in patients with systemic inflammation or infection: a systematic review. Intensive Care Med 2012; 38(9):1418-1428. DOI: 10.1007/s00134-012-2613-1.

Hahm E, Wei C, Fernandez I, Li J, Tardi NJ, Tracy M, et al. Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat Med 2017; 23(1):100-106. DOI:10.1038/nm.4242.

Hayek SS, Koh KH, Grams ME, Wei C, Ko YA, Li J, et al. A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nat Med 2017; 23(8):945-953. DOI:10.1038/nm.4362.

Wei C, Li J, Adair BD, Zhu K, Cai J, Merchant M, et al. uPAR isoform 2 forms a dimer and induces severe kidney disease in mice. J Clin Invest 2019; 129(5):1946-1959. DOI:10.1172/JCI124793.

Faubel S. SuPAR: a potential predictive biomarker for acute kidney injury. Nat Rev Nephrol 2020; 16(7):375-376. DOI:10.1038/s41581-020-0276-7.

Hall A, Crichton S, Varrier M, Bear DE, Ostermann M. suPAR as a marker of infection in acute kidney injury -a prospective observational study. BMC Nephrol 2018; 19(1):191. DOI:10.1186/s12882-018-0990-6.

Moresco RN, Bochi GV, Stein CS, De Carvalho JAM, Cembranel BM, Bollick YS. Urinary kidney injury molecule-1 in renal disease. Clin Chim Acta 2018; 487:15-21. DOI: 10.1016/j.cca.2018.09.011.

Koyner JL, Vaidya VS, Bennett MR, Ma Q, Worcester E, Akhter SA, et al. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin J Am Soc Nephrol 2010; 5(12):2154-2165. DOI:10.2215/CJN.00740110.

Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D, Shlipak MG, Koyner JL, et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol 2013; 8(7):1079-1088. DOI:10.2215/CJN.10971012.

Huang Y, Don-Wauchope AC. The clinical utility of kidney injury molecule 1 in the prediction, diagnosis and prognosis of acute kidney injury: a systematic review. Inflamm Allergy Drug Targets 2011; 10(4):260-271. DOI:10.2174/187152811796117735.

Ismail OZ, Zhang X, Wei J, Haig A, Denker BM, Suri RS, et al. Kidney injury molecule-1 protects against Gα12 activation and tissue damage in renal ischemia-reperfusion injury. Am J Pathol 2015; 185(5):1207-1215. DOI: 10.1016/j.ajpath.2015.02.003.

Ahmed SA, Hamed MA. Kidney injury molecule-1 as a predicting factor for inflamed kidney, diabetic and diabetic nephropathy Egyptian patients. J Diabetes Metab Disord 2015; 14:6. DOI:10.1186/s40200-015-0131-8.

Xu Y, Xie Y, Shao X, Ni Z, Mou S. L-FABP: A novel biomarker of kidney disease. Clin Chim Acta 2015; 445:85-90. DOI:10.1016/j.cca.2015.03.017.

Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med 2017; 55(8):1074-1089. DOI:10.1515/cclm-2016-0973.

Teo SH, Endre ZH. Biomarkers in acute kidney injury (AKI). Best Pract Res Clin Anaesthesiol 2017; 31(3):331-344. DOI:10.1016/j.bpa.2017.10.003.

Luft FC.(2020) Biomarkers and predicting acute kidney injury. Acta Physiol (Oxf) e13479. DOI:10.1111/apha.13479.

Griffin BR, Faubel S, Edelstein CL. Biomarkers of drug-induced kidney toxicity. Ther Drug Monit 2019; 41(2):213-226. DOI:10.1097/FTD.0000000000000589.

Omozee EB, Okaka EI, Edo AE, Obika LF. Urinary N-acetyl-betad-glucosaminidase levels in diabetic adults. J Lab Physicians 2019; 11:1-4. DOI:10.4103/JLP. JLP_164_17.

Andreucci M, Faga T, Pisani A, Perticone M, Michael A. The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice. Eur J Intern Med 2017; 39:1-8. DOI:10.1016/j.ejim.2016.12.001.

Srisawat N, Kellum JA. The role of biomarkers in acute kidney injury. Crit Care Clin 2020; 36(1):125-140. DOI:10.1016/j.ccc.2019.08.010.

Johnson ACM, Zager RA. Mechanisms underlying increased TIMP2 and IGFBP7 urinary excretion in experimental AKI. J Am Soc Nephrol 2018; 29(8): 2157–2167. DOI:10.1681/ASN.2018030265.

Kellum JA, Chawla LS. Cell-cycle arrest and acute kidney injury: the light and the dark sides. Nephrol Dial Transplant 2016; 31(1):16–22. DOI:10.1093/ndt/gfv130.

Kane-Gill SL, Peerapornratana S, Wong A, Murugan R, Groetzinger LM, Kim C, et al. Use of tissue inhibitor of metalloproteinase 2 and insulin-like growth factor binding protein 7 [TIMP2][IGFBP7] as an AKI risk screening tool to manage patients in the real-world setting. J Crit Care 2020; 57:97-101. DOI:10.1016/j. jcrc.2020.02.002.

Ostermann M, McCullough PA, Forni LG, Bagshaw SM, Joannidis M, Shi J, et al. Kinetics of urinary cell cycle arrest markers for acute kidney injury following exposure to potential renal insults. Crit Care Med 2018; 46(3):375-383. DOI:10.1097/CCM.0000000000002847.

Cho WY, Lim SY, Yang JH, Oh SW, Kim MG, Jo SK. Urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 as biomarkers of patients with established acute kidney injury. Korean J Intern Med 2020; 35(3):662-671. DOI:10.3904/kjim.2018.266

Won AJ, Kim S, Kim YG, Kim KB, Choi WS, Kacew S, et al. Kim KS, Jung JH, Lee BM, Kim S, Kim HS. Discovery of urinary metabolomic biomarkers for early detection of acute kidney injury. Mol Biosyst 2016; 12(1):133-144. DOI:10.1039/c5mb00492f.

Edelstein CL. Biomarkers of acute kidney injury. Adv Chronic Kidney Dis 2008; 15(3):222-234. DOI:10.1053/j.ackd.2008.04.003.

Dobilienė D, Masalskienė J, Rudaitis Š, Vitkauskienė A, Pečiulytė J, Kėvalas R. Early diagnosis and prognostic value of acute kidney injury in critically Ill patients. Medicina (Kaunas) 2019; 55(8):506. DOI:10.3390/me-dicina55080506.

Amaral Pedroso L, Nobre V, Dias Carneiro de Almeida C, da Silva Praxedes MF, Sernizon Guimarães N, Simões E Silva AC, et al. Parreiras Martins MA. Acute kidney injury biomarkers in the critically ill. Clin Chim Acta 2020; 508:170-178. DOI:10.1016/j.cca.2020.05.024.

Cunningham R, Biswas R, Steplock D, Shenolikar S, Weinman E. Role of NHERF and scaffolding proteins in proximal tubule transport. Urol Res 2010;38(4):257-262. DOI:10.1007/s00240-010-0294-1.

Khundmiri SJ, Weinman EJ, Steplock D, Cole J, Ahmad A, Baumann PD, et al. Parathyroid hormone regulation of NA+,K+-ATPase requires the PDZ 1 domain of sodium hydrogen exchanger regulatory factor-1 in opossum kidney cells. J Am Soc Nephrol 2005;16(9):2598-2607. DOI:10.1681/ASN.2004121049.

Bushau-Sprinkle A, Barati M, Conklin C, Dupre T, Gagnon KB, Khundmiri SJ, et al. Loss of the Na+/H+ Exchange Regulatory Factor 1 Increases Susceptibility to Cisplatin-Induced Acute Kidney Injury. Am J Pathol 2019;189(6):1190-1200. DOI:10.1016/j.aj-path.2019.02.010.

vünç Hacıhamdioğlu D, Hacıhamdioğlu B, Altun D, Müftüoğlu T, Karademir F, Süleymanoğlu S.Urinary netrin-1: a new biomarker for the early diagnosis of renal damage in obese children. J Clin Res Pediatr Endocrinol 2016;8(3):282-287. DOI:10.4274/jcrpe.2828.

Beker BM, Corleto MG, Fieiras C, Musso CG. Novel acute kidney injury biomarkers: their characteristics, utility and concerns. Int Urol Nephrol 2018;50(4):705-713. DOI:10.1007/s11255-017-1781-x.

Parrish AR. Matrix Metalloproteinases in Kidney Dis-ease: Role in Pathogenesis and Potential as a Therapeutic Target. Prog Mol Biol Transl Sci 2017;148:31-65. DOI:10.1016/bs.pmbts.2017.03.001.

Yang X, Chen C, Teng S, Fu X, Zha Y, Liu H, et al. Urinary Matrix Metalloproteinase-7 Predicts Severe AKI and Poor Outcomes after Cardiac Surgery. J Am Soc Nephrol 2017;28(11):3373-3382. DOI:10.1681/ASN.2017020142.

Ke B, Fan C, Yang L, Fang X. Matrix Metalloproteinases-7 and Kidney Fibrosis [published correction ap-pears in Front Physiol. 2017;28;8:192]. Front Physiol 2017;8:21. DOI:10.3389/fphys.2017.00021.

Zhou D, Tian Y, Sun L, Zhou L, Xiao L, Tan RJ, et al. Matrix Metalloproteinase-7 Is a Urinary Biomarker and Pathogenic Mediator of Kidney Fibrosis. J Am Soc Nephrol 2017;28(2):598-611. DOI:10.1681/ASN.2016030354 (2017).

Fu H, Zhou D, Zhu H, Liao J, Lin L, Hong X, et al. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int 2019;95(5):1167-1180. DOI:10.1016/j. kint.2018.11.043.

Fang F, Luo W, Yang M, Yang P, Yang X. Urinary Matrix Metalloproteinase-7 and Prediction of AKI Progression Post Cardiac Surgery. Dis Markers 2019;19;2019:9217571. DOI:10.1155/2019/9217571.

Liang J, Lin G, Tian J, Chen J, Liang R, Chen Z, et al. Measurement of urinary matrix metalloproteinase-7 for early diagnosis of acute kidney injury based on an ultrasensitive immunomagnetic microparticle-based time-resolved fluoroimmunoassay. Clin Chim Acta 2019;490:55-62. DOI:10.1016/j.cca.2018.11.037.

Kadomatsu K, Muramatsu T. Midkine and pleiotrophin in neural development and cancer. Cancer Lett 2004;204(2):127-143. DOI:10.1016/S0304-3835(03)00450-6.

Hayashi H, Sato W, Kosugi T, Nishimura K, Sugiyama D, Asano N, et al. Efficacy of urinary midkine as a bio-marker in patients with acute kidney injury. Clin Exp Nephrol 2017;21(4):597-607. DOI:10.1007/s10157-016-1318-0.

Sato W, Sato Y. Midkine in nephrogenesis, hypertension and kidney diseases. Br J Pharmacol 2014;171(4):879-887. DOI:10.1111/bph.12418.

Kosugi T, Sato W. Midkine and the kidney: health and diseases. Nephrol Dial Transplant 2012;27(1):16-21. DOI:10.1093/ndt/gfr652.

McBride WT, Kurth MJ, McLean G, Domanska A, Lamont JV, Maguire D, et al. Stratifying risk of acute kidney injury in pre and post cardiac surgery patients using a novel biomarker-based algorithm and clinical risk score. Sci Rep 2019;9(1):16963. DOI:10.1038/s41598-019-53349-1.

Albert C, Albert A, Kube J, Bellomo R, Wettersten N, Kuppe H, et al. Urinary biomarkers may provide prognostic information for subclinical acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg 2018;155(6):2441-2452.e13. DOI:10.1016/j. jtcvs.2017.12.056.

Zou YF, Zhang W. Role of microRNA in the detection, progression, and intervention of acute kidney injury. Exp Biol Med (Maywood) 2018;243(2):129-136. DOI:10.1177/1535370217749472.

Bai H, Wu S. miR-451: A Novel Biomarker and Potential Therapeutic Target for Cancer. Onco Targets Ther 2019;12:11069-11082. DOI:10.2147/OTT.S230963.

Kumari M, Mohan A, Ecelbarger CM, Gupta A, Prasad N, Tiwari S. miR-451 loaded exosomes are released by the renal cells in response to injury and associated with reduced kidney function in human. Front. Physiol 2020;11:234. DOI:10.3389/fphys.2020.00234.

Du J, Cao X, Zou L, Chen Y, Guo J, Chen Z, et al. MicroRNA-21 and risk of severe acute kidney injury and poor outcomes after adult cardiac surgery. PLoS One 2013;8(5):e63390. DOI:10.1371/journal.pone.0063390.

Pavkovic M, Robinson-Cohen C, Chua AS, Nicoara O, Cárdenas-González M, Bijol V, et al. Detection of drug-induced acute kidney injury in humans using urinary KIM-1, miR-21, -200c, and -423. Toxicol Sci 2016;152(1):205-213. DOI:10.1093/toxsci/kfw077.

60. Zhang W, Zhou X, Zhang H, Yao Q, Liu Y, Dong Z. Extracellular vesicles in diagnosis and therapy of kidney diseases. Am J Physiol Renal Physiol 2016;311(5):F844-F851. DOI:10.1152/ajprenal.00429.2016.

Cui S, Wu L, Feng X, Su H, Zhou Z, Luo W, et al. Urinary angiotensinogen predicts progressive chronic kidney disease after an episode of experimental acute kidney injury. Clin Sci (Lond) 2018;132(19):2121-2133. DOI:10.1042/CS20180758.

Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney dis-ease. Pharmacol Rev 2007;59:251–287. DOI:10.1124/pr.59.3.3.

Nakano D, Kobori H, Burford JL, Gevorgyan H, Seidel S, Hitomi H, et al. Multiphoton imaging of the glomerular permeability of angiotensinogen. J Am Soc Nephrol 2012;23(11):1847-1856. DOI:10.1681/ASN.2012010078.

Cao W, Jin L, Zhou Z, Yang M, Wu C, Wu L, et al. Overexpression of intrarenal renin-angiotensin system in human acute tubular necrosis. Kidney Blood Press Res 2016;41(6):746-756. DOI:10.1159/000450564.

Yang X, Chen C, Tian J, Zha Y, Xiong Y, Sun Z, et al. Urinary angiotensinogen level predicts AKI in acute decompensated heart failure: a prospective, two-stage study. J Am Soc Nephrol 2015;26(8):2032-2041. DOI:10.1681/ASN.2014040408.

Chen C, Yang X, Lei Y, Zha Y, Liu H, Ma C, et al. Urinary biomarkers at the time of AKI diagnosis as predictors of progression of AKI among patients with acute cardiorenal syndrome. Clin J Am Soc Nephrol 2016;11(9):1536-1544. DOI:10.2215/CJN.00910116.

Meisner A, Kerr KF, Thiessen-Philbrook H, Coca SG, Parikh CR. Methodological issues in current practice may lead to bias in the development of biomarker combinations for predicting acute kidney injury. Kidney Int 2016;89(2):429-438. DOI:10.1038/ki.2015.283.

Adiyanti SS, Loho T. Acute Kidney Injury (AKI) bio-marker. Acta Med Indones 2012;44(3):246-255.

du Cheyron D, Daubin C, Poggioli J, Ramakers M, Houillier P, Charbonneau P, et al. Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF. Am J Kidney Dis 2003;42(3):497-506. DOI:10.1016/s0272-6386(03)00744-3.

Bagshaw SM, Langenberg C, Haase M, Wan L, May CN, Bellomo R. Urinary biomarkers in septic acute kidney injury. Intensive Care Med 2007;33(7):1285-1296. DOI:10.1007/s00134-007-0656-5.

Oncel MY, Canpolat FE, Arayici S, Alyamac Dizdar E, Uras N, Oguz SS. Urinary markers of acute kidney injury in newborns with perinatal asphyxia. Ren Fail 2016;38(6):882-888. DOI:10.3109/088602 2X.2016.1165070.

Schmidt-Ott KM, Mori K, Kalandadze A, Li JY, Paragas N, Nicholas T, et al. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens 2006;15(4):442-449. DOI:10.1097/01.mnh.0000232886.81142.58.

Zafar Mohtashami A, Hadian B, Mahmoudi GA, Anbari K, Selahbarzin A. The application of urinary NGAL measurement for early detection of AKI in hospitalized patients with poisoning. Iran J Kidney Dis 2020;14(3):206-211.

Rosenberg ME, Silkensen J. Clusterin: physiologic and pathophysiologic considerations. Int J Biochem Cell Biol 1995;27(7):633–645. DOI:10.1016/1357-2725(95)00027-m.

Harpur E, Ennulat D, Hoffman D, Betton G, Gautier JC, Riefke B, et al. Biological qualification of biomarkers of chemical-induced renal toxicity in two strains of male rat. Toxicol Sci 2011;122(2):235-252. DOI:10.1093/toxsci/kfr112.

Dieterle F, Perentes E, Cordier A, Roth DR, Verdes P, Grenet O, et al. Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat Biotechnol 2010;28(5):463-469. DOI:10.1038/nbt.1622.

El-Achkar TM, Wu XR. Uromodulin in kidney injury: an instigator, bystander, or protector? Am J Kidney Dis 2012;59(3):452-461. DOI:10.1053/j.ajkd.2011.10.054.

El-Achkar TM, Wu XR, Rauchman M, McCracken R, Kiefer S, Dagher PC. Tamm-Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression. Am J Physiol Renal Physiol 2008;295(2):F534-F544. DOI:10.1152/ajprenal.00083.2008.

Micanovic R, Khan S, Janosevic D, Lee ME, Hato T, Srour EF, et al. Tamm-Horsfall protein regulates mono-nuclear phagocytes in the kidney. J Am Soc Nephrol 2018;29(3):841-856. DOI:10.1681/ASN.2017040409.

Patidar KR, Garimella PS, Macedo E, Slaven JE, Ghabril MS, Weber RE, et al. Admission plasma uromodulin and the risk of acute kidney injury in hospitalized patients with cirrhosis: a pilot study. Am J Physiol Gastrointest Liver Physiol 2019;317(4):G447-G452. DOI:10.1152/ajpgi.00158.2019.

Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem 2018;59:17-24. DOI:10.1016/j.clinbiochem.2018.07.003.

Kaleta B. The role of osteopontin in kidney diseases. Inflamm Res 2019;68(2):93-102. DOI:10.1007/s00011-018-1200-5.

Lorenzen JM, Hafer C, Faulhaber-Walter R, Kümpers P, Kielstein JT, Haller H, et al. Osteopontin predicts survival in critically ill patients with acute kidney injury. Nephrol Dial Transplant 2011;26(2):531-537. DOI:10.1093/ndt/gfq498.

Varalakshmi B, Kiranmyai VS, Aparna B, Ram R, Rao PVLNS, Kumar VS. Plasma osteopontin levels in patients with acute kidney injury requiring dialysis: a study in a tertiary care institute in South India. Int Urol Nephrol 2020;52(5):917-921. DOI:10.1007/s11255-020-02417-x.

Stojanović VD, Barišić NA, Radovanović TD, Kovač NB, Djuran JD, Antić APE, et al. Doronjski AD. Serum glutathione S-transferase Pi as predictor of the outcome and acute kidney injury in premature newborns. Pediatr Nephrol 2018;33(7):1251-1256. DOI:10.1007/s00467-017- 3690-8.

Harrison DJ, Kharbanda R, Cunningham DS, McLellan LI, Hayes JD. Distribution of glutathione S-transferase isoenzymes in human kidney: basis for possible markers of renal injury. J Clin Pathol 1989;42(6):624-628. DOI: 10.1136/jcp.42.6.624.

Sundberg A, Appelkvist EL, Dallner G, Nilsson R. Glutathione transferases in the urine: sensitive meth-ods for detection of kidney damage induced by nephrotoxic agents in humans. Environ Health Perspect 1994;102 Suppl 3(Suppl 3):293-296. DOI:10.1289/ehp.94102s3293.

Shu KH, Wang CH, Wu CH, Huang TM, Wu PC, Lai CH, et al. Urinary π-glutathione S-transferase predicts advanced acute kidney injury following cardiovascular surgery. Sci Rep 2016;6:26335. DOI:10.1038/srep26335.

Spada TC, Silva JMRD, Francisco LS, Marçal LJ, Antonangelo L, Zanetta DMT, et al. High intensity resistance training causes muscle damage and increases biomarkers of acute kidney injury in healthy individuals. PLoS One 2018;13(11):e0205791. DOI:10.1371/journal. pone.0205791.

Eltounali SA, Moodley J, Naicker T. Role of kidney biomarkers [Kidney injury molecule-1, Calbindin, Interleukin-18 and Monocyte chemoattractant protein-1] in HIV associated pre-eclampsia. Hypertens Pregnancy 2017;36(4):288-294.DOI:10.1080/10641955.2017.1385 793.

Iida T, Fujinaka H, Xu B, Zhang Y, Magdeldin S, Nameta M, et al. Decreased urinary calbindin 1 levels in proteinuric rats and humans with distal nephron segment injuries. Clin Exp Nephrol 2014;18(3):432-443. DOI:10.1007/s10157-013-0835-3.

Arulkumaran N, Sixma ML, Jentho E, Ceravola E, Bass PS, Kellum JA, et al. Sequential Analysis of a Panel of Biomarkers and Pathologic Findings in a Resuscitated Rat Model of Sepsis and Recovery. Crit Care Med 2017;45(8):e821-e830. DOI:10.1097/CCM.0000000000002381.

Schrezenmeier EV, Barasch J, Budde K, Westhoff T, Schmidt-Ott KM. Biomarkers in acute kidney injury - pathophysiological basis and clinical performance. Acta Physiol (Oxf) 2017;219(3):554-572. DOI:10.1111/apha.12764.

Chang CH, Yang CH, Yang HY, Chen TH, Lin CY, Chang SW, et al. Urinary biomarkers improve the diagnosis of intrinsic acute kidney injury in coronary care units. Medicine (Baltimore) 2015;94(40):e1703. DOI:10.1097/MD.0000000000001703.

Westhoff JH, Seibert FS, Waldherr S, Bauer F, Tönshoff B, Fichtner A, et al. Urinary calprotectin, kidney injury molecule-1, and neutrophil gelatinase-associated lipocalin for the prediction of adverse outcome in pediatric acute kidney injury. Eur J Pediatr 2017;176(6):745-755. DOI:10.1007/s00431-017-2907-y.

Ariza X, Solà E, Elia C, Barreto R, Moreira R, Morales-Ruiz M, et al. (2015) Analysis of a urinary biomarker panel for clinical outcomes assessment in cirrhosis. PLoS One 2015;10(6):e0128145. DOI:10.1371/journal. pone.0128145.

Endre ZH. Recovery from acute kidney injury: the role of biomarkers. Nephron Clin Pract 2014;127;101-105. DOI: 10.1159/000363678.

Wyler von Ballmoos M, Likosky DS, Rezaee M, Lobdell K, Alam S, Parker D, et al. Elevated preoperative Galec-tin-3 is associated with acute kidney injury after cardiac surgery. BMC Nephrol 2018;19(1):280. DOI:10.1186/s12882-018-1093-0.

Prud’homme M, Coutrot M, Michel T, Boutin L, Genest M, Poirier F, et al. Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci 2019;4(6):717-732. DOI:10.1016/j.jacbts.2019.06.005.

Federico G, Meister M, Mathow D, Heine GH, Moldenhauer G, Popovic ZV, et al. Tubular Dickkopf-3 promotes the development of renal atrophy and fibrosis. JCI Insight 2016;1(1):e84916. DOI: 10.1172/jci.insight.84916.

Zewinger S, Rauen T, Rudnicki M, Federico G, Wagner M, Triem S, et al. Dickkopf-3 (DKK3) in urine identifies patients with short-term risk of eGFR Loss. J Am Soc Nephrol 2018;29(11):2722-2733. DOI:10.1681/ASN.2018040405.

Schunk SJ, Zarbock A, Meersch M, Küllmar M, Kellum JA, Schmit D, et al. Association between urinary dick-kopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet 2019;394(10197):488-496. DOI:10.1016/S0140-6736(19)30769-X.

Meng XM, Tang PM, Li J, Lan HY. Macrophage phenotype in kidney injury and repair. Kidney Dis (Basel) 2015;1(2):138–146. DOI:10.1159/000431214.

Hoste E, Bihorac A, Al-Khafaji A, Ortega LM, Ostermann M, Haase M, et al. Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med 2020;46(5):943-953. DOI:10.1007/s00134-019-05919-0.

Schmidt IM, Hall IE, Kale S, Lee S, He CH, Lee Y, et al. Chitinase-like protein Brp-39/YKL-40 modulates the renal response to ischemic injury and predicts delayed allograft function. J Am Soc Nephrol 2013;24(2):309-319. DOI:10.1681/ASN.2012060579.

Ohno M, Bauer PO, Kida Y, Sakaguchi M, Sugahara Y, Oyama F. Quantitative Real-Time PCR analysis of YKL-40 and its comparison with mammalian chitinase mRNAs in normal human tissues using a single standard DNA. Int J Mol Sci 2015;16:9922-9935. DOI:10.3390/ijms16059922.

Malhotra R, Katz R, Jotwani V, Ambrosius WT, Raphael KL, Haley W, et al. Urine markers of kidney tubule cell injury and kidney function decline in SPRINT trial participants with CKD. Clin J Am Soc Nephrol 2020;15(3):349-358. DOI:10.2215/CJN.02780319.

Conroy AL, Hawkes MT, Elphinstone R, Opoka RO, Namasopo S, Miller C, et al. Chitinase-3-like 1 is a bio-marker of acute kidney injury and mortality in paediatric severe malaria. Malar J 2018;17(1):82. DOI:10.1186/s12936-018-2225-5.

Hoste EA, Vaara ST, De Loor J, Haapio M, Nuytinck L, Demeyere K, et al. Urinary cell cycle arrest biomarkers and chitinase 3-like protein 1 (CHI3L1) to detect acute kidney injury in the critically ill: a post hoc laboratory analysis on the FINNAKI cohort. Crit Care 2020;24(1):144. DOI:10.1186/s13054-020-02867-w.

De Loor J, Decruyenaere J, Demeyere K, Nuytinck L, Hoste EA, Meyer E. Urinary chitinase 3-like protein 1 for early diagnosis of acute kidney injury: a prospective cohort study in adult critically ill patients. Crit Care 2016;20:38. DOI: 10.1186/s13054-016-1192-x.

Puthumana J, Hall IE, Reese PP, Schröppel B, Weng FL, Thiessen-Philbrook H, et al. YKL-40 associates with renal recovery in deceased donor kidney transplantation. J Am Soc Nephrol 2017;28(2):661-670. DOI:10.1681/ASN.2016010091.

Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta 2012;1823(9):1434-1443. DOI:10.1016/j.bbamcr.2012.01.014.

van Swelm RP, Wetzels JF, Verweij VG, Laarakkers CM, Pertijs JC, van der Wijst J, et al. Renal handling of circulating and renal-synthesized hepcidin and its protective effects against hemoglobin-mediated kidney injury. J Am Soc Nephrol 2016;27(9):2720-2732. DOI:10.1681/ASN.2015040461.

Choi N, Rigatto C, Zappitelli M, Gao A, Christie S, Hiebert B, et al. Urinary hepcidin-25 is elevated in patients that avoid acute kidney injury following cardiac surgery. Can J Kidney Health Dis 2018;5:2054358117744224. DOI:10.1177/2054358117744224.

Choi N, Whitlock R, Klassen J, Zappitelli M, Arora RC, Rigatto C, et al. Early intraoperative iron-binding proteins are associated with acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg 2019;157(1):287-297.e2. DOI:10.1016/j.jtcvs.2018.06.091

Scindia Y, Dey P, Thirunagari A, Liping H, Rosin DL, Floris M, et al. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis. J Am Soc Nephrol 2015;26(11):2800-2814. DOI:10.1681/ASN.2014101037.

Albert C, Haase M, Albert A, Kropf S, Bellomo R, Westphal S, et al. Urinary biomarkers may complement the cleveland score for prediction of adverse kidney events after cardiac surgery: a pilot study. Ann Lab Med 2020;40(2):131-141. DOI:10.3343/alm.2020.40.2.131.

Joo M, Sadikot RT. PGD synthase and PGD2 in immune response. Mediators Inflamm 2012;2012:503128. DOI:10.1155/2012/503128.

Wajda J, Dumnicka P, Sporek M, Maziarz B, Kolber W, Ząbek-Adamska A, et al. Does beta-trace protein (BTP) outperform cystatin c as a diagnostic marker of acute kidney injury complicating the early phase of acute pancreatitis? J Clin Med 2020;9(1):205. DOI:10.3390/jcm9010205.

Saydam O, Türkmen E, Portakal O, Arıcı M, Doğan R, Demircin M, et al. Emerging biomarker for predicting acute kidney injury after cardiac surgery: cystatin C. Turk J Med Sci 2018;48(6):1096-1103. DOI:10.3906/sag-1704-96.

Oner AO, Aydin F, Demirelli S, Budak ES, Davran F, Akbas H, et al. Clinical value of cystatin C and beta-trace protein in glomerular filtration rate in renal trans-plant cases with stable renal graft functions: comparison by the 99mTc-DTPA plasma sample method. Nucl Med Commun 2014;35(7):733-744. DOI:10.1097/MNM.0000000000000116.

Denning GM, Ackermann LW, Barna TJ, Armstrong JG, Stoll LL, Weintraub NL, et al. Proenkephalin expression and enkephalin release are widely observed in non-neuronal tissues. Peptides 2008;29(1):83-92. DOI:10.1016/j.peptides.2007.11.004.

Beunders R, Struck J, Wu AHB, Zarbock A, Di Somma S, Mehta RL, et al. Proenkephalin (PENK) as a novel biomarker for kidney function. J Appl Lab Med 2017;2(3):400-412. DOI:10.1373/jalm.2017.023598.

Hollinger A, Wittebole X, François B, Pickkers P, Antonelli M, Gayat E, et al. Proenkephalin A 119-159 (pen-kid) is an early biomarker of septic acute kidney injury: the kidney in sepsis and septic shock (kid-sss) study. Kidney Int Rep 2018;3(6):1424-1433. DOI:10.1016/j. ekir.2018.08.006.

Rosenqvist M, Bronton K, Hartmann O, Bergmann A, Struck J, Melander O. Proenkephalin a 119-159 (penKid) - a novel biomarker for acute kidney injury in sepsis: an observational study. BMC Emerg Med 2019;19(1):75. DOI:10.1186/s12873-019-0283-9.

Peterson PA, Evrin PE, Berggård I. Differentiation of glomerular, tubular, and normal proteinuria: determinations of urinary excretion of beta-2-macroglobulin, albumin, and total protein. J Clin Invest 1969;48(7):1189-1198. DOI:10.1172/JCI106083.

Murat SN, Kurtul A, Yarlioglues M. Impact of serum albumin levels on contrast-induced acute kidney ınjury in patients with acute coronary syndromes treated with percutaneous coro-nary intervention. Angiology 2015;66(8):732-737. DOI:10.1177/0003319714551979.

George B, Joy MS, Aleksunes LM. Urinary protein biomarkers of kidney injury in patients receiving cisplatin chemotherapy. Exp Biol Med (Maywood) 2018;243(3):272-282. DOI:10.1177/1535370217745302.

Bolisetty S, Agarwal A. Urine albumin as a bio-marker in acute kidney injury. Am J Physiol Renal Physiol 2011;300(3):F626-F627. DOI:10.1152/ajpre-nal.00004.2011.

Ware LB, Johnson AC, Zager RA. Renal cortical albumin gene induction and urinary albumin excretion in response to acute kidney injury. Am J Physiol Renal Physiol 2011;300(3):F628-638. DOI:10.1152/ajpre-nal.00654.2010.

Dekker MS, Mosterd A, van ‘t Hof AW, Hoes AW. Novel biochemical markers in suspected acute coro-nary syndrome: systematic review and critical appraisal. Heart 2010;96(13):1001-1010. DOI:10.1136/hrt.2009.189886.

Aytac Ates H, Yücetaş U, Erkan E, Yucetas E, Ulusoy S, Kadihasanoglu M, et al. The predictive value of ischemia-modified albumin in renal ischemia-reperfusion injury. Urol Int 2019;103(4):473-481. DOI:10.1159/000500929.

Kocan H, Citgez S, Yucetas U, Yucetas E, Yazici M, Amasyali AS, et al. Can ischemia-modified albu-min be used as an objective biomarker for renal ischemic damage? An experimental study with Wistar albino rats. Transplant Proc 2014;46(10):3326-3329. DOI:10.1016/j.transproceed.2014.11.001.

Garimella PS, Lee AK, Ambrosius WT, Bhatt U, Cheung AK, Chonchol M, et al. Markers of kidney tubule function and risk of cardiovascular disease events and mortality in the SPRINT trial. Eur Heart J 2019;40(42):3486-3493. DOI:10.1093/eurheartj/ehz392.

Bullen AL, Katz R, Lee AK, Anderson CAM, Cheung AK, Garimella PS, et al. The SPRINT trial suggests that markers of tubule cell function in the urine associate with risk of subsequent acute kidney injury while injury markers elevate after the injury. Kidney Int 2019;96(2):470-479. DOI:10.1016/j.kint.2019.03.024.

Zheng J, Xiao Y, Yao Y, Xu G, Li C, Zhang Q, et al. Comparison of urinary biomarkers for early detection of acute kidney injury after cardiopulmonary bypass surgery in infants and young children. Pediatr Cardiol 2013;34(4):880-886. DOI:10.1007/s00246-012-0563-6.

Liu X, Guan Y, Xu S, Li Q, Sun Y, Han R, et al. Ear-ly predictors of acute kidney injury: a narrative review. Kidney Blood Press Res 2016;41(5):680-700. DOI:10.1159/000447937.

Wang R, Hu H, Hu S, He H, Shui H. β2-microglobulin is an independent indicator of acute kidney injury and outcomes in patients with intracerebral hemorrhage. Medicine (Baltimore) 2020;99(8):e19212. DOI:10.1097/MD.0000000000019212.

Barton KT, Kakajiwala A, Dietzen DJ, Goss CW, Gu H, Dharnidharka VR. Using the newer kidney disease: Im-proving Global Outcomes criteria, beta-2-microglobu-lin levels associate with severity of acute kidney injury. Clin Kidney J 2018;11(6):797-802. DOI:10.1093/ckj/sfy056.

Onopiuk A, Tokarzewicz A, Gorodkiewicz E. Cys-tatin C: a kidney function biomarker. Adv Clin Chem 2015;68:57-69. DOI:10.1016/bs.acc.2014.11.007.

Filler G, Bökenkamp A, Hofmann W, Le Bricon T, Martínez-Brú C, Grubb A. Cystatin C as a marker of GFR--history, indications, and future research. Clin Biochem 2005;38(1):1-8. DOI:10.1016/j.clinbio-chem.2004.09.025.

Shukla AN, Juneja M, Patel H, Shah KH, Konat A, Th-akkar BM, et al. Diagnostic accuracy of serum cystatin C for early recognition of contrast induced nephropathy in Western Indians undergoing cardiac catheterization. Indian Heart J 2017;69(3):311-315. DOI:10.1016/j. ihj.2016.12.010.

Yong Z, Pei X, Zhu B, Yuan H, Zhao W. Predictive value of serum cystatin C for acute kidney injury in adults: a meta-analysis of prospective cohort trials. Sci Rep 2017;7:41012. DOI:10.1038/srep41012.

Porrini E, Ruggenenti P, Luis-Lima S, Carrara F, Jiménez A, de Vries APJ, et al. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol 2019;15(3):177-190. DOI:10.1038/s41581-018-0080-9.

Abbasi F, Moosaie F, Khaloo P, Dehghani Firouzaba-di F, Fatemi Abhari SM, Atainia B, et al. Neutrophil gelatinase-associated lipocalin and retinol-binding protein-4 as biomarkers for diabetic kidney disease. Kidney Blood Press Res 2020;45(2):222-232. DOI:10.1159/000505155.

Fiseha T, Tamir Z. Urinary markers of tubular injury in early diabetic nephropathy. Int J Nephrol 2016;2016:4647685. DOI:10.1155/2016/4647685.

Nlandu Khodo S, Neelisetty S, Woodbury L, Green E, Harris RC, Zent R, et al. Deleting the TGF-β receptor in proximal tubules impairs HGF signaling. Am J Physiol Renal Physiol 2016;310(6):F499-510. DOI:10.1152/aj-prenal.00446.2015.

Gui Y, Lu Q, Gu M, Wang M, Liang Y, Zhu X, et al. Fibroblast mTOR/PPARγ/HGF axis protects against tubular cell death and acute kidney injury. Cell Death Differ 2019;26(12):2774-2789. DOI:10.1038/s41418-019-0336-3.

Zhou D, Fu H, Xiao L, Mo H, Zhuo H, Tian X, et al. Fibroblast-specific β-catenin signaling dictates the outcome of AKI. J Am Soc Nephrol 2018;29(4):1257-1271. DOI:10.1681/ASN.2017080903.

Gattai PP, Maquigussa E, da Silva Novaes A, da Silva Ribeiro R, Varela VA, Ormanji MS, et al. miR-26a modulates HGF and STAT3 effects on the kidney re-pair process in a glycerol-induced AKI model in rats. J Cell Biochem 2018;119(9):7757-7766. DOI:10.1002/jcb.27134.

Lu Z, Song N, Shen B, Xu X, Fang Y, Shi Y, et al. Syndecan-1 shedding inhibition to protect against is-chemic acute kidney injury through hgf target signaling pathway. Transplantation 2018;102(7):331-344. DOI:10.1097/TP.0000000000002170.

He J, Chen Y, Lin Y, Zhang W, Cai Y, Chen F, et al. Association study of MCP-1 promoter polymorphisms with the susceptibility and progression of sepsis. PLoS One 2017;12(5):e0176781. DOI:10.1371/journal. pone.0176781.

Haller H, Bertram A, Nadrowitz F, Menne J. Monocyte chemoattractant protein-1 and the kidney. Curr Opin Nephrol Hypertens 2016;25:42-49. DOI:10.1097/MNH.0000000000000186.

Munshi R, Johnson A, Siew ED, Ikizler TA, Ware LB, Wurfel MM, et al. MCP-1 gene activation marks acute kidney injury. J Am Soc Nephrol 2011;22(1):165-175. DOI:10.1681/ASN.2010060641.

Vianna HR, Soares CM, Silveira KD, Elmiro GS, Mendes PM, de Sousa Tavares M, et al. Cytokines in chronic kidney disease: potential link of MCP-1 and dyslipidemia in glomerular diseases. Pediatr Nephrol 2013;28(3):463-469. DOI:10.1007/s00467-012-2363-x.

Moledina DG, Isguven S, McArthur E, Thiessen-Phil-brook H, Garg AX, Shlipak M, et al. Plasma monocyte chemotactic protein-1 is associated with acute kidney injury and death after cardiac operations. Ann Thorac Surg 2017;104(2):613-620. DOI:10.1016/j.athorac-sur.2016.11.036.

Bautista E, Arcos M, Jimenez-Alvarez L, García-Sancho MC, Vázquez ME, Peña E, et al. Angiogenic and inflammatory markers in acute respiratory distress syndrome and renal injury associated to A/H1N1 virus infection. Exp Mol Pathol 2013;94(3):486-492. DOI:10.1016/j.yexmp.2013.03.007.

Bihorac A, Baslanti TO, Cuenca AG, Hobson CE, Ang D, Efron PA, et al. Acute kidney injury is associated with early cytokine changes after trauma. J Trauma Acute Care Surg 2013;74(4):1005-1013. DOI:10.1097/TA.0b013e31828586ec.

Gameiro J, Agapito Fonseca J, Jorge S, Lopes JA. Acute kidney injury definition and diagnosis: a narrative review. J Clin Med 2018;7(10):307. DOI:10.3390/jcm7100307.

Silver SA, Chertow GM. The economic consequences of acute kidney injury. Nephron 2017;137(4):297-301. DOI:10.1159/000475607.

Thongprayoon C, Hansrivijit P, Kovvuru K, Kanduri SR, Torres-Ortiz A, Acharya P, et al. Diagnostics, risk factors, treatment and outcomes of acute kidney injury in a new paradigm. J Clin Med 2020;9(4):1104. DOI:10.3390/jcm9041104.

Rao SN, Shenoy MP, Gopalakrishnan M, Kiran BA. Applicability of the Cleveland clinic scoring system for the risk prediction of acute kidney injury after cardiac surgery in a South Asian cohort. Indian Heart J 2018;70(4):533-537. DOI:10.1016/j.ihj.2017.11.022.

Mossanen JC, Pracht J, Jansen TU, Buendgens L, Stoppe C, Goetzenich A, et al. Elevated soluble uroki-nase plasminogen activator receptor and proenkepha-lin serum levels predict the development of acute kidney injury after cardiac surgery. Int J Mol Sci 2017;18(8):1662. DOI:10.3390/ijms18081662.

Greenberg JH, Parsons M, Zappitelli M, Jia Y, Thiessen-Philbrook HR, Devarajan P, et al. Cardiac biomarkers for risk stratification of acute kidney injury after pediatric cardiac surgery. Ann Thorac Surg 2020;S0003-4975(20)30506-3. DOI:10.1016/j.atho-racsur.2020.03.010.

Rangaswamy D, Sud K. Acute kidney injury and dis-ease: Long-term consequences and management. Nephrology (Carlton) 2018;23(11):969-980. DOI:10.1111/nep.13408.

Wang Y, Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol 2017;13(11):697-711. DOI:10.1038/nrneph.2017.119.

Koza Y. Acute kidney injury: current concepts and new insights. J Inj Violence Res 2016;8(1):58-62. DOI:10.5249/jivr.v8i1.610.

Vanmassenhove J, Van Biesen W, Vanholder R, Lameire N. Subclinical AKI: ready for primetime in clinical practice? J Nephrol 2019;32(1):9-16. DOI:10.1007/s40620-018-00566-y.

Jonsson N, Gille-Johnson P, Martling CR, Xu S, Venge P, Mårtensson J. Performance of plasma measurement of neutrophil gelatinase-associated lipocalin as a biomarker of bacterial infections in the intensive care unit. J Crit Care 2019;53:264-270. DOI:10.1016/j.jcrc.2019.07.001.

Huang Y, Tian Y, Likhodii S, Randell E. Baseline urinary KIM-1 concentration in detecting acute kidney injury should be interpreted with patient pre-existing nephropathy. Pract Lab Med 2019;15:e00118. DOI:10.1016/j.plabm.2019.e00118.

Imai N, Yasuda T, Kamijo-Ikemori A, Shibagaki Y, Kimura K. Distinct roles of urinary liver-type fatty acid-binding protein in non-diabetic patients with anemia. PLoS One 2015;10(5):e0126990. DOI:10.1371/journal.pone.0126990.

Chen JJ, Fan PC, Kou G, Chang SW, Chen YT, Lee CC, et al. Meta-analysis: urinary calprotectin for discrimination of intrinsic and prerenal acute kidney injury. J Clin Med 2019;8(1):74. DOI:10.3390/jcm8010074.




DOI: http://dx.doi.org/10.14748/bmr.v31.7701

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Ecem Busra Deger
Department of Physiology, Faculty of Medicine, Trakya University, Edirne
Turkey

Enver Arslan
Department of Physiology, Faculty of Medicine, Trakya University, Edirne
Turkey

Muslim Dogan Deger
Department of Urology, Edirne Sultan 1. Murat State Hospital, Edirne
Turkey

Oktay Kaya
Department of Physiology, Faculty of Medicine, Trakya University, Edirne
Turkey

Font Size


|