Scientific Online Resource System

Biomedical Reviews

In defense of the murburn explanation for aerobic respiration

Kelath Murali Manoj

Abstract

The murburn explanation for aerobic respiration was first published at Biomedical Reviews in 2017. Thereafter, via various analytical, theoretical and experimental arguments/evidence published in respected portals over the last three years, my group’s works had highlighted the untenable nature of the “electron transport chain (ETC)-driven chemiosmotic rotary ATP synthesis (CRAS)” explicatory paradigm for aerobic respiration. We have also presented strong evidence and arguments supporting the new murburn model of mitochondrial oxidative phosphorylation (mOxPhos). Overlooking the vast majority of our critical dissections, CRAS hypothesis is still advocated by some.  Further, queries are posed on the evidence-based murburn explanation without any committed effort to understand the new proposals. Herein, I expose the false attributions made to our works, point out the general and particular flaws/lacunae in the critical attention murburn model received, revisit/dissect the arguments critique(s) floated to support the chemiosmotic proposal, answer the specific queries on murburn explanation and defend/consolidate our proposals for mOxPhos. The current scientific discourse is crucial for correcting major historical errors and finding/founding new concepts of the powering logic and biophysical chemistry of life.

Keywords

bioenergetics; chemiosmosis; proton-motive force; murburn concept; aerobic respiration; mitochondria; oxidative phosphorylation; electron transport chain; trans-membrane potential

Full Text


References

Silva PJ. Chemiosmotic misunderstandings. Biophys Chem 2020; 264: 106424. [DOI: 10.1016/j.bpc.2020.106424]

Manoj KM, Gideon D, Jacob V. Murburn scheme for mitochondrial thermogenesis. Biomed Rev 2018; 29: 73-82.[DOI: 10.14748/bmr.v29.5852]

Manoj KM. The ubiquitous biochemical logic of murburn concept. Biomed Rev 2018; 29: 89-97. [DOI: 10.14748/bmr.v29.5854]

Manoj KM, Soman V, David Jacob V, Parashar A, Gideon DA, Kumar M, et al. Chemiosmotic and murburn explanations for aerobic respiration: Predictive capabilities, structure-function correlations and chemico-physical logic. Arch Biochem Biophys 2019; 676: 108128. [DOI: 10.1016/j.abb.2019.108128]

Manoj KM. Torday’s prognosis for aging and mortality: more evolution and better life! Biomed Rev 2019; 30: 23-24. [DOI: 10.14748/bmr.v30.6384]

Jacob VD, Manoj KM. Are adipocytes and ROS mistaken for villains, or are they protagonists in the drama of life?The murburn perspective. Adipobiology 2019; 10: 7-16.[DOI: 10.1515/bmc-2020-0002]

Manoj KM, Soman V. Classical and murburn explanations for acute toxicity of cyanide in aerobic respiration: A personal perspective. Toxicology 2020; 432: 152369.[DOI: 10.1016/j.tox.2020.152369]

Wallace K. Challenging the current paradigm of the chemiosmotic theory for cyanide toxicity. Toxicology 2020; 432: 152377. [DOI: 10.1016/j.tox.2020.152377]

Manoj KM. Refutation of the cation-centric torsional ATP synthesis model and advocating murburn scheme for mitochondrial oxidative phosphorylation. Biophy Chem 2020; 257: 106278. [DOI: 10.1016/j.bpc.2019.106278]

Manoj KM. Murburn concept: a paradigm shift in cellular metabolism and physiology. Biomol Concepts 2020; 11(1): 7-22. [DOI: 10.1515/bmc-2020-0002]

Manoj KM, Ramasamy S, Parashar A, Gideon D, Soman V, Jacob V, et al. Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation. Biomol Concepts 2020; 11: 32-56.[DOI: 10.1515/bmc-2020-0004]

Manoj KM. Aerobic Respiration: Criticism of the Proton-centric Explanation Involving Rotary Adeno-sine Triphosphate Synthesis, Chemiosmosis Principle, Proton Pumps and Electron Transport Chain. Biochemistry Insights 2018; 11: 1178626418818442. [DOI: 10.1177/1178626418818442]

Manoj KM, Parashar A, David Jacob V, Ramasamy S. Aerobic respiration: proof of concept for the oxygen-centric murburn perspective. J Biomol Struct Dyn 2019; 37(17): 4542-4556. [DOI: 10.1080/07391102.2018.1552896]

Gideon D, Jacob V, Manoj KM. Murburn concept heralds a new era in cellular bioenergetics. Biomed Rev 2019; 30: 89-98. [DOI: 10.14748/bmr.v30.6390]

Manoj KM. Debunking Chemiosmosis and Proposing Murburn Concept as the Operative Principle for Cellular Respiration. Biomed Rev 2017; 28: 31-48. [DOI: 10.14748/bmr.v28.4450]

Bazhin N. The essence of ATP coupling. ISRN Biochemistry 2012; 2012: 827604. [DOI: 10.5402/2012/827604]

Bazhin N. Proton gradient energy in the catalytic ATP synthesis. Reaction Kinetics and Catalysis Letters 2007; 90: 401-404. [DOI: 10.1007/s11144-007-5113-5]

Manoj KM, Bazhin NM. Murburn precepts of aerobic respiration. OSF Preprints 2020. [DOI: 10.31219/osf.io/hx4p9]

Manoj KM, Bazhin NM, Parashar A, Gideon DA, Jacob VD, Haarith D, et al. Murburn precepts for the light reaction of oxygenic photosynthesis. OSF Preprints 2020. [DOI: 10.31219/osf.io/95brg]

Slater EC. An Evaluation of the Mitchell Hypothesis of Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. European Journal of Biochemistry 1967; 1(3): 317-326. [DOI: 10.1111/j.1432-1033.1967. tb00076.x]

Slater EC. The mechanism of the conservation of energy of biological oxidations. Eur J Biochem 1987; 166(3):489-504. [DOI: 10.1111/j.1432-1033.1987.tb13542.x]

Williams RJP. Some unrealistic assumptions in the theory of chemi-osmosis and their consequences. FEBS Letters 1979; 102(1): 126-132. [DOI: 10.1016/0014-5793(79)80943-6]

Chance B, Mela L. A hydrogen ion concentration gradient in a mitochondrial membrane. Nature 1966; 212(5060):369-372. [DOI: 10.1038/212369a0]

Chance B, Mela L. Proton movements in mitochondrial membranes. Nature 1966; 212(5060): 372-376. [DOI: 10.1038/212372a0]

Ling GN. Oxidative phosphorylation and mitochondrial physiology: a critical review of chemiosmotic theory, and reinterpretation by the association-induction hypothesis. Physiol Chem Phys 1981; 13(1): 29-96.

Wainio WW: An Assessment of the Chemiosmotic Hypothesis of Mitochondrial Energy Transduction. In: Bourne GH, Danielli JF, Jeon KW, eds. Int Rev Cytol. Volume 96: Academic Press, 1985; 29-50.

Nałecz MJ. Is there sufficient experimental evidence to consider the mitochondrial cytochrome bc1 complex a proton pump? Probably no. J Bioenerg Biomembr 1986; 18(1): 21-38. [DOI: 10.1007/bf00743610]

Berden J. Rotary Movements within the ATP Synthase do not Constitute an Obligatory Element of the Catalytic Mechanism. IUBMB Life 2003; 55(8): 473-481. [DOI: 10.1080/15216540310001612318]

Lee CP, Gu Q, Xiong Y, Mitchell RA, Ernster L. P/O ratios reassessed: mitochondrial P/O ratios consistently exceed 1.5 with succinate and 2.5 with NAD-linked substrates. FASEB J 1996; 10(2): 345-350. [DOI: 10.1096/fasebj.10.2.8641569]

Mitchell P. Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 1979; 206(4423): 1148-1159. [DOI: 10.1126/science.388618]

Boyer PD. Energy, Life, and ATP. Bioscience Reports 1998; 18(3): 97-117. [DOI: 10.1023/A:1020188311092]

Dmitriev LF. [Mechanism of coupling of oxidation and phosphorylation]. Mol Biol (Mosk) 1986; 20(4): 1111-1125.

Schole J, Schole C. “Radical theory” of oxidative phosphorylation and photophosphorylation. J Theor Biol 1994; 169(2): 197-207. [DOI: 10.1006/jtbi.1994.1141]

Kasumov EA, Kasumov RE, Kasumova IV. A mechano-chemiosmotic model for the coupling of electron and proton transfer to ATP synthesis in energy-transforming membranes: a personal perspective. Photosynth Res 2015; 123(1): 1-22. [DOI: 10.1007/s11120-014-0043-3]

Manoj KM, Hager LP. Utilization of peroxide and its relevance in oxygen insertion reactions catalyzed by chloroperoxidase. Biochim Biophys Acta 2001; 1547(2):408-417. [DOI: 10.1016/S0167-4838(01)00210-2]

Manoj KM. Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. Biochim Biophys Acta 2006; 1764(8): 1325-1339. [DOI: https://doi.org/10.1016/j.bbapap.2006.05.012]

Manoj KM, Hager LP. Chloroperoxidase, a Janus Enzyme. Biochemistry 2008; 47(9): 2997-3003. [DOI: 10.1021/bi7022656]

Manoj KM, Baburaj A, Ephraim B, Pappachan F, Maviliparambathu P, k v U, et al. Explaining the Atypical Reaction Profiles of Heme Enzymes with a Novel Mechanistic Hypothesis and Kinetic Treatment. PloS one 2010; 5: e10601. [DOI: 10.1371/journal.pone.0010601]

Manoj KM, Gade SK, Mathew L. Cytochrome P450 reductase: a harbinger of diffusible reduced oxygen species. PLoS One 2010; 5(10): e13272. [DOI: 10.1371/journal. pone.0013272]

Gideon DA, Hager L, Manoj KM. The intriguing enhancement of chloroperoxidase mediated one-electron oxidations by azide, a known active-site ligand. Biochem Biophys Res Commun 2011; 415(4): 646-649. [DOI: https://doi.org/10.1016/j.bbrc.2011.10.128]

Parashar A, Manoj KM. Traces of certain drug molecules can enhance heme-enzyme catalytic outcomes. Biochem Biophys Res Commun 2012; 417(3): 1041-1045. [DOI: 10.1016/j.bbrc.2011.12.090]

Gade SK, Bhattacharya S, Manoj KM. Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay. Biochem Biophys Res Commun 2012; 419(2): 211-

[DOI: 10.1016/j.bbrc.2012.01.149]

Parashar A, Venkatachalam A, Gideon DA, Manoj KM. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand. Biochem Biophys Res Commun 2014; 455(3): 190-193. [DOI: 10.1016/j. bbrc.2014.10.137]

Manoj KM, Parashar A, Venkatachalam A, Goyal S, Satyalipsu, Singh PG, et al. Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals’ obligatory involvement in such redox reactions. Biochimie 2016; 125: 91-111. [DOI: 10.1016/j.biochi.2016.03.003]

Manoj KM, Gade SK, Venkatachalam A, Gideon DA. Electron transfer amongst flavo- and hemo-proteins: diffusible species effect the relay processes, not protein–protein binding. RSC Advances 2016; 6(29): 24121-24129.[DOI: 10.1039/C5RA26122H]

Gideon DA, Kumari R, Lynn AM, Manoj KM. What is the Functional Role of N-terminal Transmembrane Helices in the Metabolism Mediated by Liver Microsomal Cytochrome P450 and its Reductase? Cell Biochem Biophys 2012; 63: 35-45. [DOI: 10.1007/s12013-012-9339-0]

Parashar A, Gade SK, Potnuru M, Madhavan N, Manoj KM. The curious case of benzbromarone: insight into super-inhibition of cytochrome P450. PLoS One 2014; 9(3): e89967. [DOI: 10.1371/journal.pone.0089967]

Manoj KM, et al. Metabolism of xenobiotics by cytochrome P450: novel insights into the thermodynamics, kinetics and roles of redox proteins and diffusible reactive species. In: ISSX; 2016. p. 41-42.

Venkatachalam A, Parashar A, Manoj KM. Functioning of drug-metabolizing microsomal cytochrome P450s: In silico probing of proteins suggests that the distal heme ‘active site’ pocket plays a relatively ‘passive role’ in some enzyme-substrate interactions. In Silico Pharmacology 2016; 4(1): 2. [DOI: 10.1186/s40203-016-0016-7]

Manoj KM, Parashar A, Gade SK, Venkatachalam A. Functioning of Microsomal Cytochrome P450s: Murburn Concept Explains the Metabolism of Xenobiotics in Hepatocytes. Frontiers in pharmacology 2016; 7: 161-161. [DOI: 10.3389/fphar.2016.00161]

Parashar A, Gideon DA, Manoj KM. Murburn Concept: A Molecular Explanation for Hormetic and Idiosyn-cratic Dose Responses. Dose Response 2018; 16(2): 1559325818774421. [DOI: 10.1177/1559325818774421]

Manoj KM. Oxygenic photosynthesis: Critiquing the standing explanations and proposing explorative solutions based in murburn concept. OSF Preprints 2019. [DOI: 10.31219/osf.io/3mzfp]

Manoj KM, Gideon D, Jacob V, Haarith D, Manekkathodi A. Is Z-scheme a tenable explanation for the light reaction of oxygenic photosynthesis? OSF Preprints 2020. [DOI: 10.31219/osf.io/v6tdf]

Manoj KM. Critical analysis of some assumptions and observations on photolytic oxygenesis by plant cells. OSF Preprints 2020. [DOI: 10.31219/osf.io/y62j5]

Gideon DA, Nirusimhan V, Manoj KM. Are plastocyanin and ferredoxin specific electron carriers or generic redox capacitors? Classical and murburn perspectives on two photosynthetic proteins. J Biomol Struct Dyn 2020: 1-15.[DOI: 10.1080/07391102.2020.1835715]

Nelson DL, Cox MC. Lehninger: Principles of Biochemistry 4th edition ed. New York: W. H. Freeman & Co., 2004.

Voet D, Voet JG. Biochemistry. 4th Edition ed. Hoboken, NJ: John Wiley & Sons, Inc, 2011.

Hinkle PC. P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 2005; 1706(1): 1-11.[DOI: 10.1016/j.bbabio.2004.09.004]

Watt IN, Montgomery MG, Runswick MJ, Leslie AGW, Walker JE. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci 2010; 107(39): 16823-16827. [DOI: 10.1073/pnas.1011099107]

Cohn M, Drysdale GR. A study with O18 of adenosine triphosphate formation in oxidative phosphorylation. J Biol Chem 1955; 216(2): 831-846. [DOI: 10.1016/S0021-9258(19)81437-0]

Mironova GD. Mitochondria. Structure and functions in norm and pathology, 1971: 169-173.

Tyszkiewicz E, Roux E: Role of the superoxide anion (O2) and hydroxyl radical (OH.) in ATP synthesis obtained with spinach chloroplasts in darkness. In: Biggens J, ed. Progress in Photosynthesis Research. Volume 3: Martinus Nijhoff Publishers, 1987; 213-216.

Mailer K. Superoxide radical as electron donor for oxidative phosphorylation of ADP. Biochem Biophys Res Commun 1990; 170(1): 59-64. [DOI: 10.1016/0006-291x(90)91240-s]

Yahalomi D, Atkinson SD, Neuhof M, Chang ES, Philippe H, Cartwright P, et al. A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome. Proc Natl Acad Sci U S A 2020; 117(10): 5358-5363.[DOI: 10.1073/pnas.1909907117]

Manoj KM, Gideon DA, Parashar A. What is the Role of Lipid Membrane-embedded Quinones in Mitochondria and Chloroplasts? Chemiosmotic Q-cycle versus Murburn Reaction Perspective. Cell Biochem Biophys 2020. [DOI: 10.1007/s12013-020-00945-y]

Manoj KM, Gideon DA, Parashar A. Refuting the ideas advocated by Yuly et al. (PNAS, Sep. 2020): ‘Universal free energy landscapes’ and ‘deterministic electron-relay circuitry’ are unsustainable within membrane-embedded cytochrome b protein complexes involved in bioenergetic routines. OSF Preprints 2020. [DOI: 10.31219/osf. io/4vmct]

Manoj KM, Gideon D. Roles of cytochromes c and b5 in mitochondria and microsomes: Classical and murburn perspectives. OSF preprints 2020. [DOI: 10.31219/osf. io/8a6ej]

Manoj KM, Parashar A. Murburn precepts for cytochrome P450 mediated drug/xenobiotic metabolism. OSF Pre-prints 2020. [DOI: 10.31219/osf.io/97ckh]

Manoj KM, Manekkathodi A. Light’s interaction with pigments in chloroplasts: The murburn perspective. J Photochem Photobiol 2020; 100015. [DOI: 10.1016/j. jpap.2020.100015]

Manoj KM, Jacob VD, Gideon DA, Parashar A, Haarith D, Manekkathodi A. Role of thylakoid membranes in oxygenic photosynthesis: A comparative perspective using murburn concept. OSF Preprints 2020. [DOI: 10.31219/osf.io/8p2sx]

Manoj KM, Tamagawa H. A critical appraisal on cellular homeostasis, transduction of environmental stimuli and the elicitation of electrophysiological responses. OSF Preprints 2020. [DOI: 10.31219/osf.io/e2ynk]

Manoj KM, Jacob VD. The murburn precepts for photoreception. Biomed Rev 2020. [DOI: 10.31219/osf.io/gmd5t]




DOI: http://dx.doi.org/10.14748/bmr.v31.7713

Refbacks

Article Tools
Email this article (Login required)
About The Author

Kelath Murali Manoj
Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Kulappully, Kerala
India

Font Size


|