Scientific Online Resource System

Biomedical Reviews

Is there a common therapeutical strategy for bone joints and blood vessels?

Vasil Obretenov, Stanislav Yanev, Maria Zhelyazkova-Savova, Plamen Panayotov, Oreste Gualillo, George N. Chaldakov

Abstract

Growing evidence demonstrated recently a rationale for the use of orally administered collagen hydrolysate (collagen peptides) in the therapy of patients with osteoarthritis or other arthrodegenerative disorders. At the same time, there is a need for an effective treatment for millions of people in the world with atherosclerosis and its complications mainly due to the rupture of fibrous (collagenous-muscle) cap of the atherosclerotic plaque. Aortic aneurysm dissection in the heritable connective tissue disorders like Marfan, Ehlers-Danlos and Loeys-Dietz syndromes should also be considered herein. This Dance round article argues that the clinical data of collagen hydrolysate and matrix metalloproteinases (e.g., MMP-2, -9) inhibitors might be translated from osteoarthritis to the therapy of atherosclerosis as fibrous plaque stabilizers – this would be a joint of bone joints and blood vessels in action.

Keywords

osteoarthritis, collagen hydrolysate, atherosclerosis, fibrous cap,vascular smooth muscle cells, protein secretion, matrix metalloproteinases, doxycycline

Full Text


References

García-Coronado JM, Martínez-Olvera L, Elizondo- Omaña RE, Acosta-Olivo CA, Vilchez-Cavazos F, Simental-Mendía LE, et al. Effect of collagen supplementation on osteoarthritis symptoms: a meta-analysis of randomized placebo-controlled trials. Int Orthop 2019; 43(531-538). [DOI: 10.1007/s00264-018-4211-5]

Bello AE, Oesser S. Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: a review of the literature. Curr Med Res Opin 2006; 22(11): 2221-2232. [DOI: 10.1185/030079906X148373]

Moskowitz RW. Role of collagen hydrolysate in bone and joint disease. In: Seminars in Arthritis and Rheumatism. Elsevier; 2000. pp. 87-99. [DOI: 10.1053/sarh.2000.9622]

Liu H, Li B. Separation and identification of collagen peptides derived from enzymatic hydrolysate of Salmo salar skin and their anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW264. 7 inflammatory model. J Food Biochem 2022; 46(7): e14122. [DOI: 10.1111/ jfbc.14122]

da Costa BR, Nueesch E, Reichenbach S, Jueni P, Rutjes AW. Doxycycline for osteoarthritis of the knee or hip. Cochrane Database Syst Rev 2012; 11. [DOI: 10.1002/14651858.CD007323.pub3]

Yanev S, Zhelyazkova-Savova M, Chaldakov GN. The fibrous cap: a promising target in the pharmacotherapy of atherosclerosis. Biomed Rev 2019; 30:136-141. DOI:10.14748/bmr.v30.6394

Castro MM, Kandasamy AD, Youssef N, Schulz R. Matrix metalloproteinase inhibitor properties of tetracyclines: therapeutic potential in cardiovascular diseases. Pharmacol Res 2011; 64(6): 551-560. [DOI: 10.1016/j. phrs.2011.05.005]

Roycik M, Myers J, Newcomer R, Sang Q-X. Matrix metalloproteinase inhibition in atherosclerosis and stroke. Curr Mol Med 2013; 13(8): 1299-1313. [DOI: 10.2174/15665240113139990067]

Bench TJ, Jeremias A, Brown DL. Matrix metalloproteinase inhibition with tetracyclines for the treatment of coronary artery disease. Pharmacol Res 2011; 64(6): 561-566. [DOI: 10.1016/j.phrs.2011.05.002]

Cui JZ, Lee L, Sheng X, Chu F, Gibson CP, Aydinian T, et al. In vivo characterization of doxycycline-mediated protection of aortic function and structure in a mouse model of Marfan syndrome-associated aortic aneurysm. Sci Rep 2019; 9(1): 2071. [DOI: 10.1038/s41598-018-38235-6]

Tehrani AY, Cui JZ, Bucky Jones T, Hotova E, Castro M, Bernatchez P, et al. Characterization of doxycycline-mediated inhibition of Marfan syndrome-associated aortic dilation by multiphoton microscopy. Sci Rep 2020;10(1):7154. [DOI: 10.1038/s41598-020-64071-8]

Pirozzi C, Francisco V, Guida FD, Gómez R, Lago F, Pino J, et al. Butyrate modulates inflammation in chondrocytes via GPR43 receptor. Cell Physiol Biochem 2018; 51(1): 228-243. [DOI: 10.1159/000495203]

Crowley DC, Lau FC, Sharma P, Evans, M, Guthrie, N, Bagchi, M, et al. Safety and efficacy of undenatured type II collagen in the treatment of osteoarthritis of the knee: a clinical trial. Int J Med Sci 2009;6: 312-321. [DOI: 10.7150/ijms.6.312]

Di Gregoli K, Anuar M, Bianco R, White SJ, Newby AC, George SJ. MicroRNA-181b Controls Atherosclerosis and Aneurysms Through Regulation of TIMP-3 and Elastin. Circ Res 2017; 120: 49-65. [DOI: 10.1161/CIRCRE- SAHA.116.309321]

Dong M, Zhong L, Chen WQ, Ji XP, Zhang M, et al. Doxycycline stabilizes vulnerable plaque via inhibiting matrix metalloproteinases and attenuating inflammation in rabbits. PloS One 2012;7, e39695-e39695. [DOI: 10.1371/ journal.pone.0039695]

Fredman G, Tabas I. Boosting Inflammation Resolu- tion in Atherosclerosis: The Next Frontier for Therapy. Am J Pathol 2017;187:1211-1221. [DOI: 10.1016/j. ajpath.2017.01.018]

Ghenev PI, Aloe L, Kisheva AR, Singh M, Panayotov P, Fiore M, et al. QUO VADIS, ATHEROGENESIS? Part 1. Smooth muscle cell secretion – how foe becomes friend in the fight against the atherosclerotic plaque. Biomed Rev 2017;28: 134-138. DOI: 10.14748/bmr.v28.4460

Guindolet, D, Gabison, EE. Role of CD147 (EMMPRIN/ Basigin) in Tissue Remodeling. Anat Rec (Hoboken) 2020;303:1584-1589. [DOI: 10.1002/ar.24089]

Guo Y-S, Wu Z-G, Yang J-K, Chen X-J. Impact of losartan and angiotensin II on the expression of matrix metalloproteinase-9 and tissue inhibitor of metallopro- teinase-1 in rat vascular smooth muscle cells. Mol Med Rep 2015;11:1587-1594. [DOI: 10.3892/mmr.2014.2952]

Hopps E, Lo Presti, R, Caimi G. Matrix Metalloproteases in Arterial Hypertension and their Trend after Antihypertensive Treatment. Kidney Blood Press Res 2017;42: 347-357. DOI: 10.1159/000477785

Huet E, Gabison EE, Mourah S, Menashi S. Role of CD147 in tissue remodeling. Connect Tissue Res 2008;49: 175-179. [DOI: 10.1080/03008200802151722]

Izidoro-Toledo, T.C., Guimaraes DA, Belo VA, Gerlach RF, Tanus-Santos JE. Effects of statins on matrix metalloproteinases and their endogenous inhibitors in human endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 2011;383: 547-554. [DOI: 10.1007/s00210-011-0623-0]

Johnson JL, Devel, L., Czarny, B., George SJ, Jackson, CL, Rogakos V, et al. A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arte- rioscler Thromb Vasc Biol 2011;31: 528-535. [DOI: 10.1161/ ATVBAHA.110.219147]

Kanai K-I., Asano K, Hisamitsu, T Suzaki H. Suppression of matrix metalloproteinase-9 production from neutrophils by a macrolide antibiotic, roxithromycin, in vitro. Mediat Inflamm 2004;13: 313-319. [DOI: 10.1080/09629350400008810]

Lugo JP, Saiyed ZM, Lane NE. Efficacy and tolerabil- ity of an undenatured type II collagen supplement in modulating knee osteoarthritis symptoms: a multicenter randomized, double-blind, placebo-controlled study. Nutr J 2016;15:14. [DOI: 10.1186/s12937-016-0130-8]

Masaki M, Kurisaki, T., Shirakawa, K., Sehara-Fujisawa,

A. Role of Meltrin (ADAM12) in Obesity Induced by High-Fat Diet. Endocrinology 2005;146:1752-1763. [DOI: 10.1210/en.2004-1082]

Molloy KJ, Thompson MM, Jones JL, Schwalbe EC, Bell PR, Naylor AR, et al. Unstable carotid plaques exhibit raised matrix metalloproteinase-8 activ- ity. Circulation 2004;110: 337-343. [DOI: 10.1161/01. CIR.0000135588.65188.14]

Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med 2007;17:253-258. [DOI: 10.1016/j.tcm.2007.09.001]

Newby AC. Role of metalloproteinases in plaque rupture. Int J Gerontol 2007;1:103-111. [DOI: 10.1016/S1873- 9598(08)70030-9]

Olejarz W, Łacheta D, Kubiak-Tomaszewska G. Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int J Mol Sci 2020;21. [DOI: 10.3390/ ijms21113946]

Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999;340: 115-126. [DOI: 10.1056/ NEJM199901143400207]

Ruddy JM, Ikonomidis JS, Jones JA. Multidimensional Contribution of Matrix Metalloproteinases to Atherosclerotic Plaque Vulnerability: Multiple Mechanisms of Inhibition to Promote Stability. J Vasc Res 2016;53:1-16. [DOI: 10.1159/000446703]

Silvestre-Roig C, De Winther, MP, Weber C, Daemen MJ, Lutgens E, Soehnlein O. Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies. Circ Res 2014;114: 214-226. [DOI: 10.1161/ CIRCRESAHA.114.302355]

Takata K, Imaizumi S, Zhang B, Miura S-I, Saku,K. Sta- bilization of high-risk plaques. Cardiovasc DiagnTher 2016;6:304-321. [DOI: 10.21037/cdt.2015.10.03]

Wang M, Zhang J, Spinetti G, Jiang LQ, Monticone R, Zhao D, et al. Angiotensin II activates matrix metalloproteinase type II and mimics age-associated carotid arterial remodeling in young rats. Am J Pathol 2005;167: 1429- 1442. [DOI: 10.1016/S0002-9440(10)61229-1]

Wang X, Khalil, RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv Pharmacol 2018;81, 241-330. [DOI: 10.1016/bs.apha.2017.08.002]

Xiong W, Knispel, R.A., Dietz, H.C., Ramirez, F, Baxter BT. Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J Vasc Surg 2008; 47:166- 172. [DOI: 10.1016/j.jvs.2007.09.016]

Yakala GK, Cabrera-Fuentes HA, Crespo-Avilan GE, Rattanasopa C, Burlacu A, George BL, et al. FURIN Inhibition Reduces Vascular Remodeling and Ath- erosclerotic Lesion Progression in Mice. Arterioscler Thromb Vasc Biol 2019;39: 387-401. [DOI: 10.1161/ ATVBAHA.118.311903]

Ylä-Herttuala S, Bentzon JF, Daemen M, Falk E, Garcia- Garcia HM, Herrmann J, et al. Stabilization of atherosclerotic plaques: an update. Eur Heart J 2013;34: 3251-3258. [DOI: 10.1093/eurheartj/eht301]

Zhang Y, Kouguchi T, Shimizu K, Sato M, Takahata Y, Morimatsu F. Chicken collagen hydrolysate reduces proinflammatory cytokine production in C57BL/6.KOR- ApoEshl mice. J Nutr Sci Vitaminol (Tokyo) 2010;56: 208-210. [DOI: 10.3177/jnsv.56.208]

Khatri M, Naughton RJ, Clifford T, Harper LD, Corr L. The effects of collagen peptide supplementation on body composition, collagen synthesis, and recovery from joint injury and exercise: a systematic review. Amino Acids 2021;53(10):1493-1506. [DOI:10.1007/s00726-021- 03072-x]

Tomosugi N, Yamamoto S, Takeuchi M, Yonekura H, Ishigaki Y, Numata N, et al. Effect of Collagen Tripeptide on Atherosclerosis in Healthy Humans. J Atheroscler Thromb 2017; 24: 530-538. [DOI: 10.5551/jat.36293]

Igase M, Kohara K, Okada Y, Ochi M, Igase K, Inoue N, et al. A double-blind, placebo-controlled, randomized clinical study of the effect of pork collagen peptide supplementation on atherosclerosis in healthy older individuals. Biosci Biotechnol Biochem 2018; 82(5):893-895. [DOI: 10.1080/09168451.2018.1434406]

Liu H, Yang Y, Liu Y, Cui L, Fu L, Li B. Various bioactive peptides in collagen hydrolysate from salmo salar skin and the combined inhibitory effects on atherosclerosis in vitro and in vivo. Food Res Intl 2022;57:1-13. [DOI: 10.1016/j.foodres.2022.111281]




DOI: http://dx.doi.org/10.14748/bmr.v33.9124

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Vasil Obretenov
Clinic of Orthopedics and Traumatology, Department of General Surgery, Military Hospital, Varna
Bulgaria

Stanislav Yanev
Laboratory of Drug Toxicology, Institute of Neurobiology, Bulgarian Academy of Sciences
Bulgaria

Maria Zhelyazkova-Savova
Medical University of Varna
Bulgaria

Department of Preclinical and Clinical Pharmacology

Plamen Panayotov
Department of Cardiac Surgery, St Marina University Hospital, Varna
Bulgaria

Oreste Gualillo
SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela
Spain

George N. Chaldakov
Medical University of Varna
Bulgaria

Departments of Anatomy and Cell Biology and Translational Stem Cell Biology, Research Institute

Font Size


|