Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F,
Arcoraci V, et al. Oxidative Stress: Harms and Benefits
for Human Health. Oxid Med Cell Longev 2017;2017.
doi:10.1155/2017/8416763.
Uys JD, Xiong Y, Townsend DM. Nitrosative stressinduced
S-glutathionylation of protein disulfide isomerase.
Methods Enzymol 2011;490:321–32. doi:10.1016/
B978-0-12-385114-7.00018-0.
Schafer FQ, Buettner GR. Redox environment of
the cell as viewed through the redox state of the
glutathione disulfide/glutathione couple. Free Radic
Biol Med 2001;30:1191–212. doi:10.1016/S0891-
(01)00480-4.
Pham-Huy LA, He H, Pham-Huy C. Free radicals,
antioxidants in disease and health. Int J Biomed Sci
;4:89–96.
Sies H. Oxidative stress: oxidants and antioxidants. Exp
Physiol Transl Integr 1997;82:291–5.
Herrmann JM, Dick TP. Redox Biology on the rise. Biol
Chem 2012;393:999–1004. doi:10.1515/hsz-2012-0111.
Sies H. Biochemistry of Oxidative Stress. Angew Chemie
Int Ed English 1986;25:1058–71. doi:10.1002/
anie.198610581.
Sies H, Jones D. Oxidative stress. 2nd 2007.
Go YM, Jones DP. The redox proteome. J Biol Chem
;288:26512–20. doi:10.1074/jbc.R113.464131.
Alp NJ, Channon KM. Regulation of Endothelial Nitric
Oxide Synthase by Tetrahydrobiopterin in Vascular Disease.
Arterioscler Thromb Vasc Biol 2004;24:413–20.
doi:10.1161/01.ATV.0000110785.96039.f6.
Fukai T, Ushio-Fukai M. Cross-Talk between NADPH
Oxidase and Mitochondria: Role in ROS Signaling and
Angiogenesis. Cells 2020;9. doi:10.3390/cells9081849.
Sies H. Oxidativer Stress, Eustress und Distress: H2O2
als Signalmolekül. BioSpektrum 2022;28:685–90.
doi:10.1007/s12268-022-1862-y.
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants
and functional foods: Impact on human health.
Pharmacogn Rev 2010;4:118–26. doi:10.4103/0973-
70902.
Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M,
Abdrabbah M. Reactive oxygen species, heat stress and
oxidative-induced mitochondrial damage. A review. Int
J Hyperth 2014;30:513–23. doi:10.3109/02656736.201
971446.
Freeman BA, Crapo JD. Biology of disease. Free radicals
and tissue injury. Lab Investig 1982;47:412–26.
Lermant A, Murdoch CE. Cysteine glutathionylation
acts as a redox switch in endothelial cells. Antioxidants
;8. doi:10.3390/antiox8080315.
Anthonymuthu TS, Kenny EM, Bayır H. Therapies targeting
lipid peroxidation in traumatic brain injury. Brain Res
;1640:57–76. doi:10.1016/j.brainres.2016.02.006.
Gunes AE, Yilmaz O, Erbas C, Dagli SN, Celik H. High
serum 8-hydroxy-2’-deoxyguanosine levels predict
DNA damage and aging in professional divers. Rev
Assoc Med Bras 2021;67:1701–5. doi:10.1590/1806-
20210748.
Watanabe S, Li YS, Kawasaki Y, Ootsuyama Y, Kawai K.
Health examination results and work environment factors
affecting urinary 8-hydroxy-2′-deoxyguanosine levels.
J Occup Health 2021;63:e12210. doi:10.1002/1348-
12210.
Nishida N, Arizumi T, Takita M, Kitai S, Yada N, Hagiwara
S, et al. Reactive oxygen species induce epigenetic
instability through the formation of 8-hydroxydeoxyguanosine
in human hepatocarcinogenesis. Dig Dis
;31:459–66. doi:10.1159/000355245.
Rao KS. Free radical induced oxidative damage to DNA:
Relation to brain aging and neurological disorders. Indian
J Biochem Biophys.2007;46:9–15.
D’Errico M, Parlanti E, Dogliotti E. Mechanism of
oxidative DNA damage repair and relevance to human
pathology. Mutat Res - Rev Mutat Res 2008;659:4–14.
doi:10.1016/j.mrrev.2007.10.003.
Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2
(Keap1) signaling in oxidative stress. Free Radic
Biol Med 2009;47:1304–9. doi:10.1016/j.freeradbiomed.
07.035.
Turrens JF. Mitochondrial formation of reactive oxygen
species. J Physiol 2003;552:335–44. doi:10.1113/
jphysiol.2003.049478.
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial
reactive oxygen species (ROS) and ROS-induced ROS
release. Physiol Rev 2014;94:909–50. doi:10.1152/physrev.
2013.
Lennicke C, Cochemé HM. Redox metabolism: ROS
as specific molecular regulators of cell signaling and
function. Mol Cell 2021;81:3691–707. doi:10.1016/j.
molcel.2021.08.018.
Chattopadhyay M, Khemka VK, Chatterjee G, Ganguly
A, Mukhopadhyay S, Chakrabarti S. Enhanced ROS
production and oxidative damage in subcutaneous
white adipose tissue mitochondria in obese and type 2
diabetes subjects. Mol Cell Biochem 2015;399:95–103.
doi:10.1007/s11010-014-2236-7.
Finkel T. Signal transduction by reactive oxygen species.
J Cell Biol 2011;194:7–15. doi:10.1083/jcb.201102095.
Holmström KM, Finkel T. Cellular mechanisms and
physiological consequences of redox-dependent signalling.
Nat Rev Mol Cell Biol 2014;15:411–21. doi:10.1038/
nrm3801.
Sahoo DK, Chainy GBN. Hormone-linked redox status
and its modulation by antioxidants. In: Litwack GBT-V
and H, editor. Vitam. Horm., vol. 121, Academic Press;
, p. 197–246. doi:10.1016/bs.vh.2022.10.007.
Pérez-Torres I, Guarner-Lans V, Rubio-Ruiz ME. Reductive
stress in inflammation-associated diseases and the
pro-oxidant effect of antioxidant agents. Int J Mol Sci
;18. doi:10.3390/ijms18102098.
Dröge W. Free radicals in the physiological control of
cell function. Physiol Rev 2002;82:47–95. doi:10.1152/
physrev.00018.2001.
Pérez-Torres I, Manzano-Pech L, Rubio-Ruíz ME, Soto
ME, Guarner-Lans V. Nitrosative stress and its association
with cardiometabolic disorders. Molecules 2020;25.
doi:10.3390/molecules25112555.
Land ET. Free radicals in biology and medicine. Int J Radiat
Biol 1990;58:725–725. doi:10.1080/09553009014552071.
Krinsky NI. Mechanism of Action of Biological Antioxidants
(43429). Proc Soc Exp Biol Med 1992;200:248–54.
doi:10.3181/00379727-200-43429.
Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K. Regulation
of Nrf2 by mitochondrial reactive oxygen species
in physiology and pathology. Biomolecules 2020;10.
doi:10.3390/biom10020320.
Casas AI, Nogales C, Mucke HAM, Petraina A, Cuadrado
A, Rojo AI, et al. On the clinical pharmacology of reactive
oxygen species. Pharmacol Rev 2020;72:801–28.
doi:10.1124/pr.120.019422.
Bhakkiyalakshmi E, Sireesh D, Ramkumar KM. Redox
sensitive transcription via Nrf2-keap1 in suppression of
inflammation. In: Chatterjee S, Jungraithmayr W, Bagchi D,
editors. Immun. Inflamm. Heal. Dis. Emerg. Roles Nutraceuticals
Funct. Foods Immune Support, Academic Press; 2017,
p. 149–61. doi:10.1016/B978-0-12-805417-8.00012-3.
Chen F, Liu Y, Wong NK, Xiao J, So KF. Oxidative Stress
in Stem Cell Aging. Cell Transplant 2017;26:1483–95.
doi:10.1177/0963689717735407.
Filomeni G, De Zio D, Cecconi F. Oxidative stress and
autophagy: The clash between damage and metabolic
needs. Cell Death Differ 2015;22:377–88. doi:10.1038/
cdd.2014.150.
Gorina R, Sanfeliu C, Galitó A, Messeguer À, Planas
AM. Exposure of glia to pro-oxidant agents revealed
selective Stat1 activation by H2O2 and Jak2-independent
antioxidant features of the Jak2 inhibitor AG490. Glia
;55:1313–24. doi:10.1002/glia.20542.
Gorina R, Petegnief V, Chamorro Á, Planas AM. AG490
prevents cell death after exposure of rat astrocytes
to hydrogen peroxide or proinflammatory cytokines:
Involvement of the Jak2/STAT pathway. J Neurochem
;92:505–18. doi:10.1111/j.1471-4159.2004.02878.x.
Madamanchi NR, Li S, Patterson C, Runge MS. Reactive
oxygen species regulate heat-shock protein 70 via
the JAK/STAT pathway. Arterioscler Thromb Vasc Biol
;21:321–6. doi:10.1161/01.ATV.21.3.321.
Carballo M, Conde M, El Bekay R, Martín-Nieto J,
Camacho MJ, Monteseirín J, et al. Oxidative stress
triggers STAT3 tyrosine phosphorylation and nuclear
translocation in human lymphocytes. J Biol Chem
;274:17580–6. doi:10.1074/jbc.274.25.17580.
Butturini E, de Prati AC, Mariotto S. Redox regulation of
STAT1 and STAT3 signaling. Int J Mol Sci 2020;21:1–18.
doi:10.3390/ijms21197034.
Forman HJ. Redox signaling: An evolution from free
radicals to aging. Free Radic Biol Med 2016;97:398–407.
doi:10.1016/j.freeradbiomed.2016.07.003.
Kaul N, Gopalakrishna R, Gundimeda U, Choi J, Forman
HJ. Role of protein kinase C in basal and hydrogen
peroxide-stimulated NF- κB activation in the murine
macrophage J774A.1 cell line. Arch Biochem Biophys
;350:79–86. doi:10.1006/abbi.1997.0487.
Willson JA, Arienti S, Sadiku P, Reyes L, Coelho P,
Morrison T, et al. Neutrophil HIF-1α stabilization is augmented
by mitochondrial ROS produced via the glycerol
-phosphate shuttle. Blood 2022;139:281–6. doi:10.1182/
blood.2021011010.
Faraci FM. Reactive oxygen species: Influence on cerebral
vascular tone. J Appl Physiol 2006;100:739–43.
doi:10.1152/japplphysiol.01044.2005.
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M,
Telser J. Free radicals and antioxidants in normal physiological
functions and human disease. Int J Biochem Cell
Biol 2007;39:44–84. doi:10.1016/j.biocel.2006.07.001.
Yang S, Lian G. ROS and diseases: role in metabolism
and energy supply. Mol Cell Biochem 2020;467:1–12.
doi:10.1007/s11010-019-03667-9.
Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D.
ROS, Cell Senescence, and Novel Molecular Mechanisms
in Aging and Age-Related Diseases. Oxid Med Cell Longev
;2016:3565127. doi:10.1155/2016/3565127.
Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS
Crosstalk in Inflammation. Trends Cell Biol 2016;26:249–
doi:10.1016/j.tcb.2015.12.002.
Sun L, Wang X, Saredy J, Yuan Z, Yang X, Wang H.
Innate-adaptive immunity interplay and redox regulation
in immune response. Redox Biol 2020;37:101759.
doi:10.1016/j.redox.2020.101759.
Del Prete A, Zaccagnino P, Di Paola M, Saltarella M,
Oliveros Celis C, Nico B, et al. Role of mitochondria and
reactive oxygen species in dendritic cell differentiation
and functions. Free Radic Biol Med 2008;44:1443–51.
doi:10.1016/j.freeradbiomed.2007.12.037.
Brieger K, Schiavone S, Miller FJ, Krause KH. Reactive
oxygen species: From health to disease. Swiss Med Wkly
;142:w13659. doi:10.4414/smw.2012.13659.
Hampton MB, Kettle AJ, Winterbourn CC. Inside the
neutrophil phagosome: Oxidants, myeloperoxidase, and
bacterial killing. Blood 1998;92:3007–17. doi:10.1182/
blood.v92.9.3007.421k47_3007_3017.
Bárcena C, Mayoral P, Quirós PM. Mitohormesis, an Antiaging
Paradigm. Int Rev Cell Mol Biol 2018;340:35–77.
doi:10.1016/bs.ircmb.2018.05.002.
Deichmann WB, Henschler D, Holmstedt B, Keil G.
What is there that is not poison? A study of the Third
Defense by Paracelsus. Arch Toxicol 1986;58:207–13.
doi:10.1007/BF00297107.
Tapia PC. Sublethal mitochondrial stress with an attendant
stoichiometric augmentation of reactive oxygen
species may precipitate many of the beneficial alterations
in cellular physiology produced by caloric restriction,
intermittent fasting, exercise and dietary phytonutrients:
“Mitohormesis” for health and vitality. Med Hypotheses
;66:832–43. doi:10.1016/j.mehy.2005.09.009.
Lesmana R, Parameswari C, Mandagi GF, Wahyudi
JF, Permana NJ, Radhiyanti PT, et al. The Role of
Exercise-Induced Reactive Oxygen Species (ROS)
Hormesis in Aging: Friend or Foe. Cell Physiol Biochem
;56:692–706. doi:10.33594/000000594.
Hemagirri M, Sasidharan S. Biology of aging: Oxidative
stress and RNA oxidation. Mol Biol Rep 2022;49:5089–
doi:10.1007/s11033-022-07219-1.
Ferrucci L, Fabbri E. Inflammageing: chronic inflammation
in ageing, cardiovascular disease, and frailty. Nat
Rev Cardiol 2018;15:505–22. doi:10.1038/s41569-018-
-2.
Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative
Stress in Neurodegenerative Diseases: From Molecular
Mechanisms to Clinical Applications. Oxid Med Cell
Longev 2017;2017. doi:10.1155/2017/2525967.
Terracina S, Ferraguti G, Petrella C, Bruno SM, Blaconà
G, Di Certo MG, et al. Characteristic Hallmarks of Aging
and the Impact on Carcinogenesis. Curr Cancer Drug
Targets 2022;23:87–102. doi:10.2174/15680096226662
Juránek I, Nikitovic D, Kouretas D, Hayes AW, Tsatsakis
AM. Biological importance of reactive oxygen species in
relation to difficulties of treating pathologies involving
oxidative stress by exogenous antioxidants. Food Chem
Toxicol 2013;61:240–7. doi:10.1016/j.fct.2013.08.074.
Meliante PG, Zoccali F, Cascone F, Di Stefano V, Greco
A, de Vincentiis M, et al. Molecular Pathology, Oxidative
Stress, and Biomarkers in Obstructive Sleep Apnea. Int
J Mol Sci 2023;24:5478. doi:10.3390/ijms24065478.
Micangeli G, Menghi M, Profeta G, Tarani F, Mariani
A, Petrella C, et al. The Impact of Oxidative Stress
on Pediatrics Syndromes. Antioxidants 2022;11:1983.
doi:10.3390/antiox11101983.
Ismail T, Kim Y, Lee H, Lee DS, Lee HS. Interplay between
mitochondrial peroxiredoxins and ROS in cancer
development and progression. Int J Mol Sci 2019;20.
doi:10.3390/ijms20184407.
Mastino P, Rosati D, de Soccio G, Romeo M, Pentangelo
D, Venarubea S, et al. Oxidative Stress in Obstructive
Sleep Apnea Syndrome: Putative Pathways to Hearing
System Impairment. Antioxidants 2023;12. doi:10.3390/
antiox12071430.
De Sá Junior PL, Câmara DAD, Porcacchia AS, Fonseca
PMM, Jorge SD, Araldi RP, et al. The Roles of ROS in
Cancer Heterogeneity and Therapy. Oxid Med Cell Longev
;2017:2467940. doi:10.1155/2017/2467940.
Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species
(ROS) and cancer: Role of antioxidative nutraceuticals.
Cancer Lett 2017;387:95–105. doi:10.1016/j.canlet.
03.042.
Carito V, Ceccanti M, Cestari V, Natella F, Bello C, Coccurello
R, et al. Olive polyphenol effects in a mouse model
of chronic ethanol addiction. Nutrition 2017;33:65–9.
doi:10.1016/j.nut.2016.08.014.
Fiore M, Minni A, Cavalcanti L, Raponi G, Puggioni G,
Mattia A, et al. The Impact of Alcohol Consumption and
Oral Microbiota on Upper Aerodigestive Tract Carcinomas:
A Pilot Study. Antioxidants 2023;12. doi:10.3390/
antiox12061233.
Ceci FM, Francati S, Ferraguti G, Coriale G, Ciccarelli
R, Minni A, et al. Behavioral dysregulations by chronic
alcohol abuse. Motivational enhancement therapy and
cognitive behavioral therapy outcomes. Riv Psichiatr
;57:1–9. doi:10.1708/3749.37321.
Ferraguti G, Terracina S, Petrella C, Greco A, Minni
A, Lucarelli M, et al. Alcohol and Head and Neck
Cancer: Updates on the Role of Oxidative Stress, Genetic,
Epigenetics, Oral Microbiota, Antioxidants, and
Alkylating Agents. Antioxidants 2022;11. doi:10.3390/
antiox11010145.
Petrella C, Carito V, Carere C, Ferraguti G, Ciafrè S, Natella
F, et al. Oxidative stress inhibition by resveratrol in
alcohol-dependent mice. Nutrition 2020;79–80:110783.
doi:10.1016/j.nut.2020.110783.
Derme M, Piccioni MG, Brunelli R, Crognale A, Denotti
M, Ciolli P, et al. Oxidative Stress in a Mother Consuming
Alcohol during Pregnancy and in Her Newborn: A
Case Report. Antioxidants 2023;12:1216. doi:10.3390/
antiox12061216.
Na HK, Lee JY. Molecular basis of alcohol-related gastric
and colon cancer. Int J Mol Sci 2017;18. doi:10.3390/
ijms18061116.
Wang L, Wang C, Tao Z, Zhao L, Zhu Z, Wu W, et al.
Curcumin derivative WZ35 inhibits tumor cell growth
via ROS-YAP-JNK signaling pathway in breast cancer. J
Exp Clin Cancer Res 2019;38:460. doi:10.1186/s13046-
-1424-4.
Zhou X, An B, Lin Y, Ni Y, Zhao X, Liang X. Molecular
mechanisms of ROS-modulated cancer chemoresistance
and therapeutic strategies. Biomed Pharmacother
;165:115036. doi:10.1016/j.biopha.2023.115036.
Ma-on C, Sanpavat A, Whongsiri P, Suwannasin S,
Hirankarn N, Tangkijvanich P, et al. Oxidative stress
indicated by elevated expression of Nrf2 and 8-OHdG
promotes hepatocellular carcinoma progression. Med
Oncol 2017;34:1–12. doi:10.1007/s12032-017-0914-5.
Pirpour Tazehkand A, Akbarzadeh M, Velaie K, Sadeghi
MR, Samadi N. The role of Her2-Nrf2 axis in induction
of oxaliplatin resistance in colon cancer cells. Biomed
Pharmacother 2018;103:755–66. doi:10.1016/j.biopha.
04.105.
Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello
E, Lloyd B, et al. Nrf2 is overexpressed in pancreatic
cancer: Implications for cell proliferation and therapy. Mol
Cancer 2011;10:1–13. doi:10.1186/1476-4598-10-37.
Hayden A, Douglas J, Sommerlad M, Andrews L, Gould
K, Hussain S, et al. The Nrf2 transcription factor contributes
to resistance to cisplatin in bladder cancer. Urol
Oncol Semin Orig Investig vol. 32, Elsevier; 2014, p.
–14. doi:10.1016/j.urolonc.2014.02.006.
Djavaheri-Mergny M, Javelaud D, Wietzerbin J, Besançon
F. NF-κB activation prevents apoptotic oxidative
stress via an increase of both thioredoxin and MnSOD
levels in TNFα-treated Ewing sarcoma cells. FEBS Lett
;578:111–5. doi:10.1016/j.febslet.2004.10.082.
van der Pol A, van Gilst WH, Voors AA, van der Meer P.
Treating oxidative stress in heart failure: past, present and
future. Eur J Heart Fail 2019;21:425–35. doi:10.1002/
ejhf.1320.
Xie W, Santulli G, Reiken SR, Yuan Q, Osborne BW,
Chen BX, et al. Mitochondrial oxidative stress promotes
atrial fibrillation. Sci Rep 2015;5:11427. doi:10.1038/
srep11427.
Mason FE, Pronto JRD, Alhussini K, Maack C, Voigt N.
Cellular and mitochondrial mechanisms of atrial fibrillation.
Basic Res Cardiol 2020;115:72. doi:10.1007/
s00395-020-00827-7.
Lee S, Choi E, Cha MJ, Hwang KC. Looking into a
conceptual framework of ROS–miRNA–Atrial fibrillation.
Int J Mol Sci 2014;15:21754–76. doi:10.3390/
ijms151221754.
Yang KC, Dudley SC. Oxidative stress and atrial fibrillation:
Finding a missing piece to the puzzle. Circulation
;128:1724–6. doi:10.1161/CIRCULATIONAHA.
005837.
Antwi-Boasiako C, Dankwah GB, Aryee R, Hayfron-
Benjamin C, Donkor ES, Campbell AD. Oxidative Profile
of Patients with Sickle Cell Disease. Med Sci (Basel,
Switzerland) 2019;7. doi:10.3390/medsci7020017.
Cao P, Zhang C, Hua DX, Li MD, Lv BB, Fu L, et al. Serum
-Hydroxy-2′-deoxyguanosine Predicts Severity and
Prognosis of Patients with Acute Exacerbation of Chronic
Obstructive Pulmonary Disease. Lung 2022;200:31–9.
doi:10.1007/s00408-021-00507-w.
Tabima DM, Frizzell S, Gladwin MT. Reactive oxygen
and nitrogen species in pulmonary hypertension. Free
Radic Biol Med 2012;52:1970–86. doi:10.1016/j.freeradbiomed.
02.041.
Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A
key modulator in neurodegenerative diseases. Molecules
;24. doi:10.3390/molecules24081583.
Tönnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction,
and Alzheimer’s Disease. J Alzheimer’s Dis
;57:1105–21. doi:10.3233/JAD-161088.
Gaugler J, James B, Johnson T, Scholz K, Weuve J. 2016
Alzheimer’s disease facts and figures. Alzheimer’s Dement
;12:459–509. doi:10.1016/j.jalz.2016.03.001.
Macdonald R, Barnes K, Hastings C, Mortiboys H.
Mitochondrial abnormalities in Parkinson’s disease
and Alzheimer’s disease: Can mitochondria be targeted
therapeutically? Biochem Soc Trans 2018;46:891–909.
doi:10.1042/BST20170501.
Leuner K, Schütt T, Kurz C, Eckert SH, Schiller C, Occhipinti
A, et al. Mitochondrion-derived reactive oxygen
species lead to enhanced amyloid beta formation. Antioxidants
Redox Signal 2012;16:1421–33. doi:10.1089/
ars.2011.4173.
Beata BK, Wojciech J, Johannes K, Piotr L, Barbara M.
Alzheimer’s Disease—Biochemical and Psychological
Background for Diagnosis and Treatment. Int J Mol Sci
;24. doi:10.3390/ijms24021059.
Twarowski B, Herbet M. Inflammatory Processes in
Alzheimer’s Disease—Pathomechanism, Diagnosis and
Treatment: A Review. Int J Mol Sci 2023;24. doi:10.3390/
ijms24076518.
Degirmenci Y, Angelopoulou E, Georgakopoulou VE,
Bougea A. Cognitive Impairment in Parkinson’s Disease:
An Updated Overview Focusing on Emerging Pharmaceutical
Treatment Approaches. Medicina (Kaunas)
;59. doi:10.3390/medicina59101756.
Ionescu-Tucker A, Cotman CW. Emerging roles of
oxidative stress in brain aging and Alzheimer’s disease.
Neurobiol Aging 2021;107:86–95. doi:10.1016/j.neurobiolaging.
07.014.
Padurariu M, Ciobica A, Lefter R, Serban IL, Stefanescu
C, Chirita R. The oxidative stress hypothesis in Alzheimer’s
disease. Psychiatr Danub 2013;25:401–9.
Collins AE, Saleh TM, Kalisch BE. Naturally Occurring
Antioxidant Therapy in Alzheimer’s Disease. Antioxidants
(Basel) 2022;11. doi:10.3390/antiox11020213.
Frisoli ML, Essien K, Harris JE. Vitiligo: Mechanisms
of Pathogenesis and Treatment. Annu Rev Immunol
;38:621–48. doi:10.1146/annurev-immunol-
-023531.
Wang Y, Li S, Li C. Perspectives of new advances in the
pathogenesis of vitiligo: From oxidative stress to autoimmunity.
Med Sci Monit 2019;25:1017–23. doi:10.12659/
MSM.914898.
Chang WL, Ko CH. The Role of Oxidative Stress in
Vitiligo: An Update on Its Pathogenesis and Therapeutic
Implications. Cells 2023;12. doi:10.3390/
cells12060936.
Ma J, Li S, Zhu L, Guo S, Yi X, Cui T, et al. Baicalein
protects human vitiligo melanocytes from oxidative stress
through activation of NF-E2-related factor2 (Nrf2) signaling
pathway. Free Radic Biol Med 2018;129:492–503.
doi:10.1016/j.freeradbiomed.2018.10.421.
Mou K, Pan W, Han D, Wen X, Cao F, Miao Y, et al.
Glycyrrhizin protects human melanocytes from H2O2‑induced
oxidative damage via the Nrf2‑dependent induction
of HO‑1. Int J Mol Med 2019;44:253–61. doi:10.3892/
ijmm.2019.4200.
Yang L, Yang F, Teng L, Katayama I. 6-Shogaol Protects
Human Melanocytes Against Oxidative Stress Through
Activation of the Nrf2-Antioxidant Response Element
Signaling Pathway. Int J Mol Sci 2020;21:3537.
doi:10.3390/ijms21103537.
Barati E, Nikzad H, Karimian M. Oxidative stress and
male infertility: current knowledge of pathophysiology
and role of antioxidant therapy in disease management.
Cell Mol Life Sci 2020;77:93–113. doi:10.1007/s00018-
-03253-8.
Aitken RJ, Baker MA, Sawyer D. Oxidative stress in
the male germ line and its role in the aetiology of male
infertility and genetic disease. Reprod Biomed Online
;7:65–70. doi:10.1016/S1472-6483(10)61730-0.
Walke G, Gaurkar SS, Prasad R, Lohakare T, Wanjari
M. The Impact of Oxidative Stress on Male Reproductive
Function: Exploring the Role of Antioxidant Supplementation.
Cureus 2023;15:e42583. doi:10.7759/
cureus.42583.
Aitken RJ, Drevet JR, Moazamian A, Gharagozloo
P. Male Infertility and Oxidative Stress: A Focus on
the Underlying Mechanisms. Antioxidants 2022;11.
doi:10.3390/antiox11020306.
Jakubik-Uljasz J, Gill K, Rosiak-Gill A, Piasecka M.
Relationship between sperm morphology and sperm
DNA dispersion. Transl Androl Urol 2020;9:405–15.
doi:10.21037/tau.2020.01.31.
Fiore M, Messina MP, Petrella C, D’Angelo A, Greco
A, Ralli M, et al. Antioxidant properties of plant polyphenols
in the counteraction of alcohol-abuse induced
damage: Impact on the Mediterranean diet. J Funct Foods
;71:104012. doi:10.1016/j.jff.2020.104012.
Ciafrè S, Carito V, Ferraguti G, Greco A, Chaldakov
GN, Fiore M, et al. How alcohol drinking affects our
genes: An epigenetic point of view. Biochem Cell Biol
;97:345–56. doi:10.1139/bcb-2018-0248.
Ciafrè S, Ferraguti G, Greco A, Polimeni A, Ralli M,
Ceci FM, et al. Alcohol as an early life stressor: epigenetics,
metabolic, neuroendocrine and neurobehavioral
implications. Neurosci Biobehav Rev 2020;118:654–68.
doi:10.1016/j.neubiorev.2020.08.018.
Terracina S, Ferraguti G, Tarani L, Messina MP, Lucarelli
M, Vitali M, et al. Transgenerational Abnormalities Induced
by Paternal Preconceptual Alcohol Drinking.
Findings from Humans and Animal Models. Curr Neuropharmacol
;19:1158–1173. doi:10.2174/157015
x19666211101111430.
Carito V, Ceccanti M, Ferraguti G, Coccurello R, Ciafrè
S, Tirassa P, et al. NGF and BDNF Alterations by Prenatal
Alcohol Exposure. Curr Neuropharmacol 2019;17:308–
doi:10.2174/1570159x15666170825101308.
Khaw SC, Wong ZZ, Anderson RA, da Silva SM. LCarnitine
and L-Acetylcarnitine Supplementation for
Idiopathic Male Infertility. Reprod Fertil 2020;1:67–81.
doi:10.1530/RAF-20-0037.
Jung JH, Seo JT. Empirical medical therapy in idiopathic
male infertility: Promise or panacea? Clin Exp Reprod
Med 2014;41:108–14. doi:10.5653/cerm.2014.41.3.108.
Busetto GM, Agarwal A, Virmani A, Antonini G, Ragonesi
G, Del Giudice F, et al. Effect of metabolic and
antioxidant supplementation on sperm parameters in
oligo-astheno-teratozoospermia, with and without varicocele:
A double-blind placebo-controlled study. Andrologia
;50. doi:10.1111/and.12927.
Martin-Hidalgo D, Bragado MJ, Batista AR, Oliveira PF,
Alves MG. Antioxidants and male fertility: From molecular
studies to clinical evidence. Antioxidants 2019;8.
doi:10.3390/antiox8040089.
Agarwal A, Leisegang K, Majzoub A, Henkel R, Finelli
R, Selvam MKP, et al. Utility of antioxidants in the treatment
of male infertility: Clinical guidelines based on a
systematic review and analysis of evidence. World J Mens
Health 2021;39:1–58. doi:10.5534/WJMH.200196.
Menghi M, Micangeli G, Tarani F, Putotto C, Pirro F,
Mariani A, et al. Neuroinflammation and Oxidative Stress
in Individuals Affected by DiGeorge Syndrome. Int J Mol
Sci 2023;24(4):4242. doi: 10.3390/ijms24044242.
Alahmar AT, Sengupta P. Impact of Coenzyme Q10 and
Selenium on Seminal Fluid Parameters and Antioxidant
Status in Men with Idiopathic Infertility. Biol Trace Elem
Res 2021;199:1246–52. doi:10.1007/s12011-020-02251-3.
Manoj KM. Debunking chemiosmosis and proposing
murburn concept as the operative principle for cellular
respiration. Biomed Rev 2017;28:31–48. doi:10.14748/
bmr.v28.4450.
Manoj KM. Murburn concept and murzymes in 2023:
Celebrating 25th year of pursuit. Biomed Rev 2022;33:1–
Manoj KM, Gideon DA, Jacob VD. Murburn scheme for
mitochondrial thermogenesis. Biomed Rev 2018;29:73.
doi:10.14748/bmr.v29.5852.
Venkatachalam A, Parashar A, Manoj KM. Functioning
of drug-metabolizing microsomal cytochrome P450s: In
silico probing of proteins suggests that the distal heme
‘active site’ pocket plays a relatively ‘passive role’ in
some enzyme-substrate interactions. Silico Pharmacol
;4:1–38. doi:10.1186/s40203-016-0016-7.