Scientific Online Resource System

Biomedical Reviews

The janus face of oxidative stress in health and disease: The cause or the cure?

Silvia Francati, Marco Fiore, Giampiero Ferraguti

Abstract

Reactive oxygen species (ROS), reactive nitrogen species (RNS) and diffusible reactive species (DRS), under certain concentrations, play an important role at the physiological level. The role of antioxidant molecules, endogenous and exogenous, is to maintain adequate amounts of ROS and RNS. The increase in ROS and RNS due to an overproduction of these species or a decrease in antioxidant molecules leads to the phenomenon called oxidative stress. Oxidative stress is involved in the physiological process of aging but is implicated in pathologies such as some types of tumors, neurodegenerative and autoimmune disorders, male infertility, cardiovascular disorders such as atrial fibrillation, and lung disorders such as chronic obstructive pulmonary disorders and pulmonary hypertension. This involvement has aroused widespread interest, especially because many studies try to exploit it at a therapeutic level. The purpose of this review is to discuss pathologies in which oxidative stress has an important role and for this reason, it can be targeted for a therapeutic intervention to improve or cure the pathology; sometimes modulation of oxidative stress can be used to improve the effect of the therapy.

Keywords

Antioxidant compounds, reactive oxygen species (ROS), reactive nitrogen species (RNS), diffusible reactive species (DRS)

Full Text


References

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F,

Arcoraci V, et al. Oxidative Stress: Harms and Benefits

for Human Health. Oxid Med Cell Longev 2017;2017.

doi:10.1155/2017/8416763.

Uys JD, Xiong Y, Townsend DM. Nitrosative stressinduced

S-glutathionylation of protein disulfide isomerase.

Methods Enzymol 2011;490:321–32. doi:10.1016/

B978-0-12-385114-7.00018-0.

Schafer FQ, Buettner GR. Redox environment of

the cell as viewed through the redox state of the

glutathione disulfide/glutathione couple. Free Radic

Biol Med 2001;30:1191–212. doi:10.1016/S0891-

(01)00480-4.

Pham-Huy LA, He H, Pham-Huy C. Free radicals,

antioxidants in disease and health. Int J Biomed Sci

;4:89–96.

Sies H. Oxidative stress: oxidants and antioxidants. Exp

Physiol Transl Integr 1997;82:291–5.

Herrmann JM, Dick TP. Redox Biology on the rise. Biol

Chem 2012;393:999–1004. doi:10.1515/hsz-2012-0111.

Sies H. Biochemistry of Oxidative Stress. Angew Chemie

Int Ed English 1986;25:1058–71. doi:10.1002/

anie.198610581.

Sies H, Jones D. Oxidative stress. 2nd 2007.

Go YM, Jones DP. The redox proteome. J Biol Chem

;288:26512–20. doi:10.1074/jbc.R113.464131.

Alp NJ, Channon KM. Regulation of Endothelial Nitric

Oxide Synthase by Tetrahydrobiopterin in Vascular Disease.

Arterioscler Thromb Vasc Biol 2004;24:413–20.

doi:10.1161/01.ATV.0000110785.96039.f6.

Fukai T, Ushio-Fukai M. Cross-Talk between NADPH

Oxidase and Mitochondria: Role in ROS Signaling and

Angiogenesis. Cells 2020;9. doi:10.3390/cells9081849.

Sies H. Oxidativer Stress, Eustress und Distress: H2O2

als Signalmolekül. BioSpektrum 2022;28:685–90.

doi:10.1007/s12268-022-1862-y.

Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants

and functional foods: Impact on human health.

Pharmacogn Rev 2010;4:118–26. doi:10.4103/0973-

70902.

Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M,

Abdrabbah M. Reactive oxygen species, heat stress and

oxidative-induced mitochondrial damage. A review. Int

J Hyperth 2014;30:513–23. doi:10.3109/02656736.201

971446.

Freeman BA, Crapo JD. Biology of disease. Free radicals

and tissue injury. Lab Investig 1982;47:412–26.

Lermant A, Murdoch CE. Cysteine glutathionylation

acts as a redox switch in endothelial cells. Antioxidants

;8. doi:10.3390/antiox8080315.

Anthonymuthu TS, Kenny EM, Bayır H. Therapies targeting

lipid peroxidation in traumatic brain injury. Brain Res

;1640:57–76. doi:10.1016/j.brainres.2016.02.006.

Gunes AE, Yilmaz O, Erbas C, Dagli SN, Celik H. High

serum 8-hydroxy-2’-deoxyguanosine levels predict

DNA damage and aging in professional divers. Rev

Assoc Med Bras 2021;67:1701–5. doi:10.1590/1806-

20210748.

Watanabe S, Li YS, Kawasaki Y, Ootsuyama Y, Kawai K.

Health examination results and work environment factors

affecting urinary 8-hydroxy-2′-deoxyguanosine levels.

J Occup Health 2021;63:e12210. doi:10.1002/1348-

12210.

Nishida N, Arizumi T, Takita M, Kitai S, Yada N, Hagiwara

S, et al. Reactive oxygen species induce epigenetic

instability through the formation of 8-hydroxydeoxyguanosine

in human hepatocarcinogenesis. Dig Dis

;31:459–66. doi:10.1159/000355245.

Rao KS. Free radical induced oxidative damage to DNA:

Relation to brain aging and neurological disorders. Indian

J Biochem Biophys.2007;46:9–15.

D’Errico M, Parlanti E, Dogliotti E. Mechanism of

oxidative DNA damage repair and relevance to human

pathology. Mutat Res - Rev Mutat Res 2008;659:4–14.

doi:10.1016/j.mrrev.2007.10.003.

Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2

(Keap1) signaling in oxidative stress. Free Radic

Biol Med 2009;47:1304–9. doi:10.1016/j.freeradbiomed.

07.035.

Turrens JF. Mitochondrial formation of reactive oxygen

species. J Physiol 2003;552:335–44. doi:10.1113/

jphysiol.2003.049478.

Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial

reactive oxygen species (ROS) and ROS-induced ROS

release. Physiol Rev 2014;94:909–50. doi:10.1152/physrev.

2013.

Lennicke C, Cochemé HM. Redox metabolism: ROS

as specific molecular regulators of cell signaling and

function. Mol Cell 2021;81:3691–707. doi:10.1016/j.

molcel.2021.08.018.

Chattopadhyay M, Khemka VK, Chatterjee G, Ganguly

A, Mukhopadhyay S, Chakrabarti S. Enhanced ROS

production and oxidative damage in subcutaneous

white adipose tissue mitochondria in obese and type 2

diabetes subjects. Mol Cell Biochem 2015;399:95–103.

doi:10.1007/s11010-014-2236-7.

Finkel T. Signal transduction by reactive oxygen species.

J Cell Biol 2011;194:7–15. doi:10.1083/jcb.201102095.

Holmström KM, Finkel T. Cellular mechanisms and

physiological consequences of redox-dependent signalling.

Nat Rev Mol Cell Biol 2014;15:411–21. doi:10.1038/

nrm3801.

Sahoo DK, Chainy GBN. Hormone-linked redox status

and its modulation by antioxidants. In: Litwack GBT-V

and H, editor. Vitam. Horm., vol. 121, Academic Press;

, p. 197–246. doi:10.1016/bs.vh.2022.10.007.

Pérez-Torres I, Guarner-Lans V, Rubio-Ruiz ME. Reductive

stress in inflammation-associated diseases and the

pro-oxidant effect of antioxidant agents. Int J Mol Sci

;18. doi:10.3390/ijms18102098.

Dröge W. Free radicals in the physiological control of

cell function. Physiol Rev 2002;82:47–95. doi:10.1152/

physrev.00018.2001.

Pérez-Torres I, Manzano-Pech L, Rubio-Ruíz ME, Soto

ME, Guarner-Lans V. Nitrosative stress and its association

with cardiometabolic disorders. Molecules 2020;25.

doi:10.3390/molecules25112555.

Land ET. Free radicals in biology and medicine. Int J Radiat

Biol 1990;58:725–725. doi:10.1080/09553009014552071.

Krinsky NI. Mechanism of Action of Biological Antioxidants

(43429). Proc Soc Exp Biol Med 1992;200:248–54.

doi:10.3181/00379727-200-43429.

Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K. Regulation

of Nrf2 by mitochondrial reactive oxygen species

in physiology and pathology. Biomolecules 2020;10.

doi:10.3390/biom10020320.

Casas AI, Nogales C, Mucke HAM, Petraina A, Cuadrado

A, Rojo AI, et al. On the clinical pharmacology of reactive

oxygen species. Pharmacol Rev 2020;72:801–28.

doi:10.1124/pr.120.019422.

Bhakkiyalakshmi E, Sireesh D, Ramkumar KM. Redox

sensitive transcription via Nrf2-keap1 in suppression of

inflammation. In: Chatterjee S, Jungraithmayr W, Bagchi D,

editors. Immun. Inflamm. Heal. Dis. Emerg. Roles Nutraceuticals

Funct. Foods Immune Support, Academic Press; 2017,

p. 149–61. doi:10.1016/B978-0-12-805417-8.00012-3.

Chen F, Liu Y, Wong NK, Xiao J, So KF. Oxidative Stress

in Stem Cell Aging. Cell Transplant 2017;26:1483–95.

doi:10.1177/0963689717735407.

Filomeni G, De Zio D, Cecconi F. Oxidative stress and

autophagy: The clash between damage and metabolic

needs. Cell Death Differ 2015;22:377–88. doi:10.1038/

cdd.2014.150.

Gorina R, Sanfeliu C, Galitó A, Messeguer À, Planas

AM. Exposure of glia to pro-oxidant agents revealed

selective Stat1 activation by H2O2 and Jak2-independent

antioxidant features of the Jak2 inhibitor AG490. Glia

;55:1313–24. doi:10.1002/glia.20542.

Gorina R, Petegnief V, Chamorro Á, Planas AM. AG490

prevents cell death after exposure of rat astrocytes

to hydrogen peroxide or proinflammatory cytokines:

Involvement of the Jak2/STAT pathway. J Neurochem

;92:505–18. doi:10.1111/j.1471-4159.2004.02878.x.

Madamanchi NR, Li S, Patterson C, Runge MS. Reactive

oxygen species regulate heat-shock protein 70 via

the JAK/STAT pathway. Arterioscler Thromb Vasc Biol

;21:321–6. doi:10.1161/01.ATV.21.3.321.

Carballo M, Conde M, El Bekay R, Martín-Nieto J,

Camacho MJ, Monteseirín J, et al. Oxidative stress

triggers STAT3 tyrosine phosphorylation and nuclear

translocation in human lymphocytes. J Biol Chem

;274:17580–6. doi:10.1074/jbc.274.25.17580.

Butturini E, de Prati AC, Mariotto S. Redox regulation of

STAT1 and STAT3 signaling. Int J Mol Sci 2020;21:1–18.

doi:10.3390/ijms21197034.

Forman HJ. Redox signaling: An evolution from free

radicals to aging. Free Radic Biol Med 2016;97:398–407.

doi:10.1016/j.freeradbiomed.2016.07.003.

Kaul N, Gopalakrishna R, Gundimeda U, Choi J, Forman

HJ. Role of protein kinase C in basal and hydrogen

peroxide-stimulated NF- κB activation in the murine

macrophage J774A.1 cell line. Arch Biochem Biophys

;350:79–86. doi:10.1006/abbi.1997.0487.

Willson JA, Arienti S, Sadiku P, Reyes L, Coelho P,

Morrison T, et al. Neutrophil HIF-1α stabilization is augmented

by mitochondrial ROS produced via the glycerol

-phosphate shuttle. Blood 2022;139:281–6. doi:10.1182/

blood.2021011010.

Faraci FM. Reactive oxygen species: Influence on cerebral

vascular tone. J Appl Physiol 2006;100:739–43.

doi:10.1152/japplphysiol.01044.2005.

Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M,

Telser J. Free radicals and antioxidants in normal physiological

functions and human disease. Int J Biochem Cell

Biol 2007;39:44–84. doi:10.1016/j.biocel.2006.07.001.

Yang S, Lian G. ROS and diseases: role in metabolism

and energy supply. Mol Cell Biochem 2020;467:1–12.

doi:10.1007/s11010-019-03667-9.

Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D.

ROS, Cell Senescence, and Novel Molecular Mechanisms

in Aging and Age-Related Diseases. Oxid Med Cell Longev

;2016:3565127. doi:10.1155/2016/3565127.

Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS

Crosstalk in Inflammation. Trends Cell Biol 2016;26:249–

doi:10.1016/j.tcb.2015.12.002.

Sun L, Wang X, Saredy J, Yuan Z, Yang X, Wang H.

Innate-adaptive immunity interplay and redox regulation

in immune response. Redox Biol 2020;37:101759.

doi:10.1016/j.redox.2020.101759.

Del Prete A, Zaccagnino P, Di Paola M, Saltarella M,

Oliveros Celis C, Nico B, et al. Role of mitochondria and

reactive oxygen species in dendritic cell differentiation

and functions. Free Radic Biol Med 2008;44:1443–51.

doi:10.1016/j.freeradbiomed.2007.12.037.

Brieger K, Schiavone S, Miller FJ, Krause KH. Reactive

oxygen species: From health to disease. Swiss Med Wkly

;142:w13659. doi:10.4414/smw.2012.13659.

Hampton MB, Kettle AJ, Winterbourn CC. Inside the

neutrophil phagosome: Oxidants, myeloperoxidase, and

bacterial killing. Blood 1998;92:3007–17. doi:10.1182/

blood.v92.9.3007.421k47_3007_3017.

Bárcena C, Mayoral P, Quirós PM. Mitohormesis, an Antiaging

Paradigm. Int Rev Cell Mol Biol 2018;340:35–77.

doi:10.1016/bs.ircmb.2018.05.002.

Deichmann WB, Henschler D, Holmstedt B, Keil G.

What is there that is not poison? A study of the Third

Defense by Paracelsus. Arch Toxicol 1986;58:207–13.

doi:10.1007/BF00297107.

Tapia PC. Sublethal mitochondrial stress with an attendant

stoichiometric augmentation of reactive oxygen

species may precipitate many of the beneficial alterations

in cellular physiology produced by caloric restriction,

intermittent fasting, exercise and dietary phytonutrients:

“Mitohormesis” for health and vitality. Med Hypotheses

;66:832–43. doi:10.1016/j.mehy.2005.09.009.

Lesmana R, Parameswari C, Mandagi GF, Wahyudi

JF, Permana NJ, Radhiyanti PT, et al. The Role of

Exercise-Induced Reactive Oxygen Species (ROS)

Hormesis in Aging: Friend or Foe. Cell Physiol Biochem

;56:692–706. doi:10.33594/000000594.

Hemagirri M, Sasidharan S. Biology of aging: Oxidative

stress and RNA oxidation. Mol Biol Rep 2022;49:5089–

doi:10.1007/s11033-022-07219-1.

Ferrucci L, Fabbri E. Inflammageing: chronic inflammation

in ageing, cardiovascular disease, and frailty. Nat

Rev Cardiol 2018;15:505–22. doi:10.1038/s41569-018-

-2.

Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative

Stress in Neurodegenerative Diseases: From Molecular

Mechanisms to Clinical Applications. Oxid Med Cell

Longev 2017;2017. doi:10.1155/2017/2525967.

Terracina S, Ferraguti G, Petrella C, Bruno SM, Blaconà

G, Di Certo MG, et al. Characteristic Hallmarks of Aging

and the Impact on Carcinogenesis. Curr Cancer Drug

Targets 2022;23:87–102. doi:10.2174/15680096226662

Juránek I, Nikitovic D, Kouretas D, Hayes AW, Tsatsakis

AM. Biological importance of reactive oxygen species in

relation to difficulties of treating pathologies involving

oxidative stress by exogenous antioxidants. Food Chem

Toxicol 2013;61:240–7. doi:10.1016/j.fct.2013.08.074.

Meliante PG, Zoccali F, Cascone F, Di Stefano V, Greco

A, de Vincentiis M, et al. Molecular Pathology, Oxidative

Stress, and Biomarkers in Obstructive Sleep Apnea. Int

J Mol Sci 2023;24:5478. doi:10.3390/ijms24065478.

Micangeli G, Menghi M, Profeta G, Tarani F, Mariani

A, Petrella C, et al. The Impact of Oxidative Stress

on Pediatrics Syndromes. Antioxidants 2022;11:1983.

doi:10.3390/antiox11101983.

Ismail T, Kim Y, Lee H, Lee DS, Lee HS. Interplay between

mitochondrial peroxiredoxins and ROS in cancer

development and progression. Int J Mol Sci 2019;20.

doi:10.3390/ijms20184407.

Mastino P, Rosati D, de Soccio G, Romeo M, Pentangelo

D, Venarubea S, et al. Oxidative Stress in Obstructive

Sleep Apnea Syndrome: Putative Pathways to Hearing

System Impairment. Antioxidants 2023;12. doi:10.3390/

antiox12071430.

De Sá Junior PL, Câmara DAD, Porcacchia AS, Fonseca

PMM, Jorge SD, Araldi RP, et al. The Roles of ROS in

Cancer Heterogeneity and Therapy. Oxid Med Cell Longev

;2017:2467940. doi:10.1155/2017/2467940.

Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species

(ROS) and cancer: Role of antioxidative nutraceuticals.

Cancer Lett 2017;387:95–105. doi:10.1016/j.canlet.

03.042.

Carito V, Ceccanti M, Cestari V, Natella F, Bello C, Coccurello

R, et al. Olive polyphenol effects in a mouse model

of chronic ethanol addiction. Nutrition 2017;33:65–9.

doi:10.1016/j.nut.2016.08.014.

Fiore M, Minni A, Cavalcanti L, Raponi G, Puggioni G,

Mattia A, et al. The Impact of Alcohol Consumption and

Oral Microbiota on Upper Aerodigestive Tract Carcinomas:

A Pilot Study. Antioxidants 2023;12. doi:10.3390/

antiox12061233.

Ceci FM, Francati S, Ferraguti G, Coriale G, Ciccarelli

R, Minni A, et al. Behavioral dysregulations by chronic

alcohol abuse. Motivational enhancement therapy and

cognitive behavioral therapy outcomes. Riv Psichiatr

;57:1–9. doi:10.1708/3749.37321.

Ferraguti G, Terracina S, Petrella C, Greco A, Minni

A, Lucarelli M, et al. Alcohol and Head and Neck

Cancer: Updates on the Role of Oxidative Stress, Genetic,

Epigenetics, Oral Microbiota, Antioxidants, and

Alkylating Agents. Antioxidants 2022;11. doi:10.3390/

antiox11010145.

Petrella C, Carito V, Carere C, Ferraguti G, Ciafrè S, Natella

F, et al. Oxidative stress inhibition by resveratrol in

alcohol-dependent mice. Nutrition 2020;79–80:110783.

doi:10.1016/j.nut.2020.110783.

Derme M, Piccioni MG, Brunelli R, Crognale A, Denotti

M, Ciolli P, et al. Oxidative Stress in a Mother Consuming

Alcohol during Pregnancy and in Her Newborn: A

Case Report. Antioxidants 2023;12:1216. doi:10.3390/

antiox12061216.

Na HK, Lee JY. Molecular basis of alcohol-related gastric

and colon cancer. Int J Mol Sci 2017;18. doi:10.3390/

ijms18061116.

Wang L, Wang C, Tao Z, Zhao L, Zhu Z, Wu W, et al.

Curcumin derivative WZ35 inhibits tumor cell growth

via ROS-YAP-JNK signaling pathway in breast cancer. J

Exp Clin Cancer Res 2019;38:460. doi:10.1186/s13046-

-1424-4.

Zhou X, An B, Lin Y, Ni Y, Zhao X, Liang X. Molecular

mechanisms of ROS-modulated cancer chemoresistance

and therapeutic strategies. Biomed Pharmacother

;165:115036. doi:10.1016/j.biopha.2023.115036.

Ma-on C, Sanpavat A, Whongsiri P, Suwannasin S,

Hirankarn N, Tangkijvanich P, et al. Oxidative stress

indicated by elevated expression of Nrf2 and 8-OHdG

promotes hepatocellular carcinoma progression. Med

Oncol 2017;34:1–12. doi:10.1007/s12032-017-0914-5.

Pirpour Tazehkand A, Akbarzadeh M, Velaie K, Sadeghi

MR, Samadi N. The role of Her2-Nrf2 axis in induction

of oxaliplatin resistance in colon cancer cells. Biomed

Pharmacother 2018;103:755–66. doi:10.1016/j.biopha.

04.105.

Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello

E, Lloyd B, et al. Nrf2 is overexpressed in pancreatic

cancer: Implications for cell proliferation and therapy. Mol

Cancer 2011;10:1–13. doi:10.1186/1476-4598-10-37.

Hayden A, Douglas J, Sommerlad M, Andrews L, Gould

K, Hussain S, et al. The Nrf2 transcription factor contributes

to resistance to cisplatin in bladder cancer. Urol

Oncol Semin Orig Investig vol. 32, Elsevier; 2014, p.

–14. doi:10.1016/j.urolonc.2014.02.006.

Djavaheri-Mergny M, Javelaud D, Wietzerbin J, Besançon

F. NF-κB activation prevents apoptotic oxidative

stress via an increase of both thioredoxin and MnSOD

levels in TNFα-treated Ewing sarcoma cells. FEBS Lett

;578:111–5. doi:10.1016/j.febslet.2004.10.082.

van der Pol A, van Gilst WH, Voors AA, van der Meer P.

Treating oxidative stress in heart failure: past, present and

future. Eur J Heart Fail 2019;21:425–35. doi:10.1002/

ejhf.1320.

Xie W, Santulli G, Reiken SR, Yuan Q, Osborne BW,

Chen BX, et al. Mitochondrial oxidative stress promotes

atrial fibrillation. Sci Rep 2015;5:11427. doi:10.1038/

srep11427.

Mason FE, Pronto JRD, Alhussini K, Maack C, Voigt N.

Cellular and mitochondrial mechanisms of atrial fibrillation.

Basic Res Cardiol 2020;115:72. doi:10.1007/

s00395-020-00827-7.

Lee S, Choi E, Cha MJ, Hwang KC. Looking into a

conceptual framework of ROS–miRNA–Atrial fibrillation.

Int J Mol Sci 2014;15:21754–76. doi:10.3390/

ijms151221754.

Yang KC, Dudley SC. Oxidative stress and atrial fibrillation:

Finding a missing piece to the puzzle. Circulation

;128:1724–6. doi:10.1161/CIRCULATIONAHA.

005837.

Antwi-Boasiako C, Dankwah GB, Aryee R, Hayfron-

Benjamin C, Donkor ES, Campbell AD. Oxidative Profile

of Patients with Sickle Cell Disease. Med Sci (Basel,

Switzerland) 2019;7. doi:10.3390/medsci7020017.

Cao P, Zhang C, Hua DX, Li MD, Lv BB, Fu L, et al. Serum

-Hydroxy-2′-deoxyguanosine Predicts Severity and

Prognosis of Patients with Acute Exacerbation of Chronic

Obstructive Pulmonary Disease. Lung 2022;200:31–9.

doi:10.1007/s00408-021-00507-w.

Tabima DM, Frizzell S, Gladwin MT. Reactive oxygen

and nitrogen species in pulmonary hypertension. Free

Radic Biol Med 2012;52:1970–86. doi:10.1016/j.freeradbiomed.

02.041.

Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A

key modulator in neurodegenerative diseases. Molecules

;24. doi:10.3390/molecules24081583.

Tönnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction,

and Alzheimer’s Disease. J Alzheimer’s Dis

;57:1105–21. doi:10.3233/JAD-161088.

Gaugler J, James B, Johnson T, Scholz K, Weuve J. 2016

Alzheimer’s disease facts and figures. Alzheimer’s Dement

;12:459–509. doi:10.1016/j.jalz.2016.03.001.

Macdonald R, Barnes K, Hastings C, Mortiboys H.

Mitochondrial abnormalities in Parkinson’s disease

and Alzheimer’s disease: Can mitochondria be targeted

therapeutically? Biochem Soc Trans 2018;46:891–909.

doi:10.1042/BST20170501.

Leuner K, Schütt T, Kurz C, Eckert SH, Schiller C, Occhipinti

A, et al. Mitochondrion-derived reactive oxygen

species lead to enhanced amyloid beta formation. Antioxidants

Redox Signal 2012;16:1421–33. doi:10.1089/

ars.2011.4173.

Beata BK, Wojciech J, Johannes K, Piotr L, Barbara M.

Alzheimer’s Disease—Biochemical and Psychological

Background for Diagnosis and Treatment. Int J Mol Sci

;24. doi:10.3390/ijms24021059.

Twarowski B, Herbet M. Inflammatory Processes in

Alzheimer’s Disease—Pathomechanism, Diagnosis and

Treatment: A Review. Int J Mol Sci 2023;24. doi:10.3390/

ijms24076518.

Degirmenci Y, Angelopoulou E, Georgakopoulou VE,

Bougea A. Cognitive Impairment in Parkinson’s Disease:

An Updated Overview Focusing on Emerging Pharmaceutical

Treatment Approaches. Medicina (Kaunas)

;59. doi:10.3390/medicina59101756.

Ionescu-Tucker A, Cotman CW. Emerging roles of

oxidative stress in brain aging and Alzheimer’s disease.

Neurobiol Aging 2021;107:86–95. doi:10.1016/j.neurobiolaging.

07.014.

Padurariu M, Ciobica A, Lefter R, Serban IL, Stefanescu

C, Chirita R. The oxidative stress hypothesis in Alzheimer’s

disease. Psychiatr Danub 2013;25:401–9.

Collins AE, Saleh TM, Kalisch BE. Naturally Occurring

Antioxidant Therapy in Alzheimer’s Disease. Antioxidants

(Basel) 2022;11. doi:10.3390/antiox11020213.

Frisoli ML, Essien K, Harris JE. Vitiligo: Mechanisms

of Pathogenesis and Treatment. Annu Rev Immunol

;38:621–48. doi:10.1146/annurev-immunol-

-023531.

Wang Y, Li S, Li C. Perspectives of new advances in the

pathogenesis of vitiligo: From oxidative stress to autoimmunity.

Med Sci Monit 2019;25:1017–23. doi:10.12659/

MSM.914898.

Chang WL, Ko CH. The Role of Oxidative Stress in

Vitiligo: An Update on Its Pathogenesis and Therapeutic

Implications. Cells 2023;12. doi:10.3390/

cells12060936.

Ma J, Li S, Zhu L, Guo S, Yi X, Cui T, et al. Baicalein

protects human vitiligo melanocytes from oxidative stress

through activation of NF-E2-related factor2 (Nrf2) signaling

pathway. Free Radic Biol Med 2018;129:492–503.

doi:10.1016/j.freeradbiomed.2018.10.421.

Mou K, Pan W, Han D, Wen X, Cao F, Miao Y, et al.

Glycyrrhizin protects human melanocytes from H2O2‑induced

oxidative damage via the Nrf2‑dependent induction

of HO‑1. Int J Mol Med 2019;44:253–61. doi:10.3892/

ijmm.2019.4200.

Yang L, Yang F, Teng L, Katayama I. 6-Shogaol Protects

Human Melanocytes Against Oxidative Stress Through

Activation of the Nrf2-Antioxidant Response Element

Signaling Pathway. Int J Mol Sci 2020;21:3537.

doi:10.3390/ijms21103537.

Barati E, Nikzad H, Karimian M. Oxidative stress and

male infertility: current knowledge of pathophysiology

and role of antioxidant therapy in disease management.

Cell Mol Life Sci 2020;77:93–113. doi:10.1007/s00018-

-03253-8.

Aitken RJ, Baker MA, Sawyer D. Oxidative stress in

the male germ line and its role in the aetiology of male

infertility and genetic disease. Reprod Biomed Online

;7:65–70. doi:10.1016/S1472-6483(10)61730-0.

Walke G, Gaurkar SS, Prasad R, Lohakare T, Wanjari

M. The Impact of Oxidative Stress on Male Reproductive

Function: Exploring the Role of Antioxidant Supplementation.

Cureus 2023;15:e42583. doi:10.7759/

cureus.42583.

Aitken RJ, Drevet JR, Moazamian A, Gharagozloo

P. Male Infertility and Oxidative Stress: A Focus on

the Underlying Mechanisms. Antioxidants 2022;11.

doi:10.3390/antiox11020306.

Jakubik-Uljasz J, Gill K, Rosiak-Gill A, Piasecka M.

Relationship between sperm morphology and sperm

DNA dispersion. Transl Androl Urol 2020;9:405–15.

doi:10.21037/tau.2020.01.31.

Fiore M, Messina MP, Petrella C, D’Angelo A, Greco

A, Ralli M, et al. Antioxidant properties of plant polyphenols

in the counteraction of alcohol-abuse induced

damage: Impact on the Mediterranean diet. J Funct Foods

;71:104012. doi:10.1016/j.jff.2020.104012.

Ciafrè S, Carito V, Ferraguti G, Greco A, Chaldakov

GN, Fiore M, et al. How alcohol drinking affects our

genes: An epigenetic point of view. Biochem Cell Biol

;97:345–56. doi:10.1139/bcb-2018-0248.

Ciafrè S, Ferraguti G, Greco A, Polimeni A, Ralli M,

Ceci FM, et al. Alcohol as an early life stressor: epigenetics,

metabolic, neuroendocrine and neurobehavioral

implications. Neurosci Biobehav Rev 2020;118:654–68.

doi:10.1016/j.neubiorev.2020.08.018.

Terracina S, Ferraguti G, Tarani L, Messina MP, Lucarelli

M, Vitali M, et al. Transgenerational Abnormalities Induced

by Paternal Preconceptual Alcohol Drinking.

Findings from Humans and Animal Models. Curr Neuropharmacol

;19:1158–1173. doi:10.2174/157015

x19666211101111430.

Carito V, Ceccanti M, Ferraguti G, Coccurello R, Ciafrè

S, Tirassa P, et al. NGF and BDNF Alterations by Prenatal

Alcohol Exposure. Curr Neuropharmacol 2019;17:308–

doi:10.2174/1570159x15666170825101308.

Khaw SC, Wong ZZ, Anderson RA, da Silva SM. LCarnitine

and L-Acetylcarnitine Supplementation for

Idiopathic Male Infertility. Reprod Fertil 2020;1:67–81.

doi:10.1530/RAF-20-0037.

Jung JH, Seo JT. Empirical medical therapy in idiopathic

male infertility: Promise or panacea? Clin Exp Reprod

Med 2014;41:108–14. doi:10.5653/cerm.2014.41.3.108.

Busetto GM, Agarwal A, Virmani A, Antonini G, Ragonesi

G, Del Giudice F, et al. Effect of metabolic and

antioxidant supplementation on sperm parameters in

oligo-astheno-teratozoospermia, with and without varicocele:

A double-blind placebo-controlled study. Andrologia

;50. doi:10.1111/and.12927.

Martin-Hidalgo D, Bragado MJ, Batista AR, Oliveira PF,

Alves MG. Antioxidants and male fertility: From molecular

studies to clinical evidence. Antioxidants 2019;8.

doi:10.3390/antiox8040089.

Agarwal A, Leisegang K, Majzoub A, Henkel R, Finelli

R, Selvam MKP, et al. Utility of antioxidants in the treatment

of male infertility: Clinical guidelines based on a

systematic review and analysis of evidence. World J Mens

Health 2021;39:1–58. doi:10.5534/WJMH.200196.

Menghi M, Micangeli G, Tarani F, Putotto C, Pirro F,

Mariani A, et al. Neuroinflammation and Oxidative Stress

in Individuals Affected by DiGeorge Syndrome. Int J Mol

Sci 2023;24(4):4242. doi: 10.3390/ijms24044242.

Alahmar AT, Sengupta P. Impact of Coenzyme Q10 and

Selenium on Seminal Fluid Parameters and Antioxidant

Status in Men with Idiopathic Infertility. Biol Trace Elem

Res 2021;199:1246–52. doi:10.1007/s12011-020-02251-3.

Manoj KM. Debunking chemiosmosis and proposing

murburn concept as the operative principle for cellular

respiration. Biomed Rev 2017;28:31–48. doi:10.14748/

bmr.v28.4450.

Manoj KM. Murburn concept and murzymes in 2023:

Celebrating 25th year of pursuit. Biomed Rev 2022;33:1–

Manoj KM, Gideon DA, Jacob VD. Murburn scheme for

mitochondrial thermogenesis. Biomed Rev 2018;29:73.

doi:10.14748/bmr.v29.5852.

Venkatachalam A, Parashar A, Manoj KM. Functioning

of drug-metabolizing microsomal cytochrome P450s: In

silico probing of proteins suggests that the distal heme

‘active site’ pocket plays a relatively ‘passive role’ in

some enzyme-substrate interactions. Silico Pharmacol

;4:1–38. doi:10.1186/s40203-016-0016-7.




DOI: http://dx.doi.org/10.14748/bmr.v34.9606

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Silvia Francati
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy

Marco Fiore
Institute of Biochemistry and Cell Biology (IBBC-CNR), c/o Department of Sensory Organs, Sapienza University of Rome, Rome, Italy

Giampiero Ferraguti
Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy

Font Size


|